3) cho tam giác ABC vuông tại A , AB<AC , đường cao AH . Trên 1 nữa mặt phẳng bờ BC có chứa A vẽ hình vuông AHKD, K và C nằm cùng phía đối với AH . KD cắt AC ở E. CM H,I,D thằng hàng
a)tam giác ABE là tam giác gì ? Why. Vẽ hình bình hành BAEF . À cắt BE ở I . Cm AKF=90 độ
1) Cho hình thang vuông ABCD(AB//CD,A=90• )có AB =1/2CD . H là hình chieus của D trên AC , M là trung điểm HC. Chứng minh BMD=90 độ
2) cho tam giác ABC vuông tại A , phân giác AD . Họi E,F thứ tự là hình chiếu của D trên AB,AC. Cmr AEDF là hình vuông
4) cho tam giác ABC . Lấy D,E lần lượt thuộc tia đối của BA,CA sak cho DB=BC=CE. Gọi O là giao điểm BE,CD . Qua O vẽ đường thẳng ss vs tia phân giác góc BAC , cắt AC ở K . CMR AB=CK
2:
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
=>AEDF là hình vuông