K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

x+7/2010+x+6/2011=x+5/2012+x+4/2013

((x+7/2010)-1)+((x+6/2011)-1)=(x+5/2012)-1)+(x+4/2013)-1)

x+2017/2010+x+2017/2011-x+2017/2012-x+2017/2013=0

x+2017(1/2010+1/2011-1/2012-1/2013)=0

x+2017=0(vì 1/2010+1/2011-1/2012-1/2013<0)

x=-2017

vậy.......

tk mk nha bn

12 tháng 10 2018

Ta có:

\(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}\)

\(\Leftrightarrow\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)=\left(\frac{x+5}{2012}+1\right)+\left(\frac{x+4}{2013}+1\right)\)

\(\Leftrightarrow\frac{x+2017}{2010}+\frac{x+2017}{2011}=\frac{x+2017}{2012}+\frac{x+2017}{2013}\)

\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)=\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}\right)\)

Suy ra \(x+2017=0\)

Vậy \(x=-2017\)

b) Dễ tự làm nhé

22 tháng 4

Bài 1: Tìm \( x \)

\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]

Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:

\[
\frac{25\%}{100} = 0.25
\]

Phương trình ban đầu trở thành:

\[
x - 0.25x = \frac{1}{2}
\]

Tổng hợp các hạng tử giống nhau:

\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]

Giải phương trình ta được:

\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]

Vậy, \( x = \frac{2}{3} \)

Bài 2: Tính hợp lý

a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]

Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.

\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]

b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]

Tích của các phân số là:

\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]

c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]

Tích của các phân số là:

\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

22 tháng 4 2020

Bài 1 : 

Ta có  : 

\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)

\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)

\(+\left(\frac{x+2013}{2011}+1\right)\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)

\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)

\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+4024=0\)

\(\Rightarrow x=-4024\)

22 tháng 4 2020

Bài 2 : 

Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)

=> Phương trình trở thành 

\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)

\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)

\(\Rightarrow5a^2+3a-8=0\)

\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)

Vì \(a\ge0\Rightarrow a=1\)

\(\Rightarrow x^2+2x+1=1\)

\(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2,0\right\}\)