tim số tự nhiên n sao cho n+19 và n-57 đều là các số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt :
\(\hept{\begin{cases}4n+5=a^2\\9n+7=b^2\end{cases}}\)( a,b là các số tự nhiên )
\(\Rightarrow\hept{\begin{cases}36n+45=9a^2\\36n+28=4b^2\end{cases}}\)
\(\Rightarrow\left(36n+45\right)-\left(36n+28\right)=9a^2-4b^2\)
\(\Rightarrow17=\left(3a-2b\right)\left(3a+2b\right)\)
Vì a, b là các số tự nhiên nên 3a-2b , 3a+3b là cá số nguyên và 3a-2b <= 3a+2b nên ta có
\(\left(3a-2b;3a+2b\right)\in\left\{\left(1;17\right);\left(-17;-1\right)\right\}\)
\(\Rightarrow6a\in\left\{18;-18\right\}\)
\(\Rightarrow a\in\left\{3;-3\right\}\)
Mà a là số tự nhiên nên a=3
\(\Rightarrow4n+5=a^2=3^2=9\)
\(\Rightarrow4n=4\)
\(\Rightarrow n=1\)
Vậy n=1
Mik rất muốn giúp bạn nhưng bài này thật sự rất khí, rất rất khó luôn. Từ khi biết đc câu hỏi này của bạn là mik hỏi đông hỏi tây, hỏi thầy cô, bạn bè nhưng kết quả lại là.............. ai cũng chịu
Thế nha! Sorry bạn nhìu lắm. Mik là bạn của bn mà lại ko giúp bạn đc
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
Giả sử n - 19 = a2; n + 44 = b2 (a; b thuộc tập hợp số tự nhiên)
=> b2 - a2 = 63 => (b - a)(b + a) = 63
Rõ ràng a + b > b - a (tức 2a > 0 do a là số tự nhiên và do 63 không phải là số chính phương nên a + b khác b - a => 2a khác 0)
và a + b > 0 => b - a > 0
Ta có: 63 = 3.21 = 7.9
TH1: \(\hept{\begin{cases}a+b=21\\b-a=3\end{cases}\Rightarrow\hept{\begin{cases}a=9\\b=12\end{cases}}}\)
TH2: \(\hept{\begin{cases}a+b=9\\b-a=7\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Thế vào ta có:
TH1: \(\hept{\begin{cases}n-19=a^2=81\\n+44=b^2=144\end{cases}}\Rightarrow\hept{\begin{cases}n=100\\n=100\end{cases}}\Rightarrow n=100\)(nhận)
TH2: \(\hept{\begin{cases}n-19=a^2=1\\n+44=b^2=64\end{cases}}\Rightarrow\hept{\begin{cases}n=20\\n=20\end{cases}}\Rightarrow n=20\)(nhận)
Vậy n = 100 hay n = 20 thì thỏa ycbt
Đặt \(N=3^n+19\)
Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1
\(\Rightarrow\)N không phải SCP
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow\left(3^k\right)^2+19=m^2\)
\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)
Pt ước số cơ bản, bạn tự hoàn thành nhé
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
=> n \(⋮\) 4
=> n chẵn
=> n+1 cũng là số lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
=> n \(⋮\) 8
Mặt khác :
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 là các số chính phương lẻ
\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)
Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1
=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)
=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1
=> n=4b(b+1) =>n \(⋮\)8 (1)
Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)
Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1
Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)
m\(^2\) = 1 (mod3)
=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3
Mà (8;3)=1
Từ (1) ; (2) và (3) => n \(⋮\) 24
Giang ne
Đặt \(\hept{\begin{cases}n+19=t^2\\n-57=k^2\end{cases}\left(t,k\in N\right)\Rightarrow\left(n+19\right)-\left(n-57\right)=t^2-k^2\Rightarrow}76=\left(t-k\right)\left(t+k\right)\)
Ta có: \(76=1.76=2.38=4.19\)
Mà t - k và t + k là 2 số cùng tính chẵn lẻ, \(t-k< t+k\)
Nên \(\hept{\begin{cases}t-k=2\\t+k=38\end{cases}\Rightarrow t=\left(2+38\right):2=20}\)
Ta có: \(n+19=t^2\)
Thay t = 20, tính được n = 381
Chúc bạn học tốt.