Bài 1 : Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là trung điểm của AE, EC, CF, FA. Chứng minh tứ giác MNPQ là hình bình hành.
Bài 2 : Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm BF và CD; N là giao điểm của DE và AB. Chứng minh rằng :
a) M, N theo thứ tự là trung điểm của CD, AB
b) EMFN là hình bình hành
Cần lắm bạn giả đc bài <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
a) Xét tứ giác AMND có
AM//ND
\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMND là hình bình hành
Suy ra: AD=MN
b) Xét tứ giác BCNM có
BM//CN
\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: BCNM là hình bình hành
Xét tứ giác AMCN có
AM//CN
\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMCN là hình bình hành
Suy ra: AN//CM
hay EN//MF
Xét tứ giác BMDN có
BM//DN
\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)
Do đó: BMDN là hình bình hành
Suy ra: BN//MD
hay NF//ME
Xét tứ giác MENF có
ME//NF(cmt)
MF//NE(cmt)
Do đó: MENF là hình bình hành
a) Xét ΔADC có
E là trung điểm của AD
K là trung điểm của AC
Do đó: EK là đường trung bình của ΔADC
Suy ra: EK//DC
Xét ΔABC có
K là trung điểm của AC
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔABC
Suy ra: KF//AB
Lời giải:
a.
Vì $ABCD$ là hình bình hành nên $AB\parallel CD$
$\Rightarrow AG\parallel CH$
$AG=\frac{1}{2}AB; CH=\frac{1}{2}CD; AB=CD$ (theo tính chất hbh)
$\Rightarrow AG=CH$
Tứ giác $AGCH$ có $AG=CH$ và $AG\parallel CH$ nên đây là hbh
$\Rightarrow AH=CG$
b.
Hoàn toàn tương tự phần a, ta cm được $BF=DE$ và $BF\parallel DE$ nên $BFDE$ là hình bình hành
$\Rightarrow BE\parallel DF$
c.
Vì $BE\parallel DF$ nên $MN\parallel PQ(1)$
Vì $AGCH$ là hình bình hành nên $AH\parallel CG$
$\Rightarrow MQ\parallel NP(2)$
Từ $(1);(2)\Rightarrow MNPQ$ là hình bình hành.