( x - 1 ) x ( x - 1 ) 2 x ( x - 1 ) 3 = 1024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow4^{x-5}\cdot17=68\)
=>4^x-5=4
=>x-5=1
=>x=6
b: \(\Leftrightarrow\dfrac{1}{3}:\left|2x-1\right|=\dfrac{1}{3}+\dfrac{2}{3}=1\)
=>|2x-1|=1/3
=>2x-1=1/3 hoặc 2x-1=-1/3
=>x=2/3 hoặc x=1/3
c: =>|2x-2|=|3x+15|
=>3x+15=2x-2 hoặc 3x+15=-2x+2
=>x=-17 hoặc x=-13/5
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
(x+1)+(x+2)+(x+3)+...+(x+1024)=2056
<=> (x+x+x+...+x)+(1+2+3+...+1024)=2056
Số số hạng x là : (1024-1):1+1=1024 số
Đặt A = 1+2+3+..+1024
Tổng A là : (1024+1)x1024:2=524800
=> 1024x + 524800= 2056
<=> 1024x= 2056-524800
<=> 1024x=- 522744
x= \(-\frac{522744}{1024}\)
- Đề bài có sai sót gì không bạn ?
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
a,
13[x-9] = 169
=> x - 9 = 169/13
=> x - 9 = 13
=> x = 13+9
=> x = 22
b,
Viết lại đề:
7x+3 = 343
<=> 7x+3 = 73
=> x + 3 = 3
=> x = 3-3
=> x = 0
c,
230 + [16 + [x-5]] = 315 . 23
=> 230 + [16 + x - 5] = 315 . 8
=> 230 + 16 + x - 5 = 2520
=> 230 + 16 + x = 2520 + 5 = 2525
=> x = 2525 - 230 - 16 = 2279
d,
13.x - 32.x = 20171 - 12018
=> 13x - 9x = 2017 - 1
=> 4x = 2016
=> x = 504
a) 13 ( x-9 )=169
=> x-9 =169 : 13 =13
=> x=13+9 =22
b)\(7^{x+3}=343\)
\(7^x.7^3=343\)
\(7^x=343:7^3\)
\(7^x=1\Rightarrow x=1\)
c)230 + 16 +x -5 =315.8
241 +x =2520
x=2520-241=2279
d) 13x -\(3^2.x\)=2017-1
x(13-9)=2016
x.4=2016
x=2016:4
x=504
\(2^{x+3}.2^{x+1}=1024\)
\(\Leftrightarrow2^x.2^3.2^x.2=1024\)
\(\Leftrightarrow2^{2x}.2^4=2^{10}\)
\(\Leftrightarrow2^{2x}=2^{10}:2^4\)
\(\Leftrightarrow2^{2x}=2^6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy x=3
chúc bn hok tốt
\(2^{x+3}.2^{x+1}=1024\)
\(\Leftrightarrow2^{x+3+x+1}=1024\)
\(\Leftrightarrow2^{2x+4}=2^{10}\)
\(\Rightarrow2x+4=10\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
HỌC TỐT NHA !
21 x 22 x 23 x ... x 2x = 1024
=> 21+2+3+...+x = 210
=> 1 + 2 + 3 + ... + x = 10
=> (1 + x).x:2 = 10
=> (1 + x).x = 10.2
=> (1 + x).x = 20
=> (1 + x).x = 5.4
=> x = 4
Vậy x = 4
a, \(\left(x+1\right)^2=169\)
\(\left(x+1\right)^2=13^2\)
\(x+1=13\)
\(x=13-1\)
\(x=12\)
1.
a) \(\left(x+1\right)^2=169\)
⇒ \(x+1=\pm13\)
⇒ \(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{12;-14\right\}.\)
b) \(\left(x+3\right)^3=-\frac{1}{27}\)
⇒ \(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)
⇒ \(x+3=-\frac{1}{3}\)
⇒ \(x=\left(-\frac{1}{3}\right)-3\)
⇒ \(x=-\frac{10}{3}\)
Vậy \(x=-\frac{10}{3}.\)
c) \(\left(2x-4\right)^4=\frac{1}{625}\)
⇒ \(2x-4=\pm\frac{1}{5}\)
⇒ \(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)
Còn câu d) bạn làm tương tự như mấy câu trên.
Chúc bạn học tốt!
\(\left(x-1\right)\cdot\left(x-1\right)^2.\left(x-1\right)^3=1024\)
\(\Rightarrow\left(x-1\right)^1.\left(x-1\right)^2.\left(x-1\right)^3=1024\)
\(\Rightarrow\left(x-1\right)^{1+2+3}=1024\)
\(\Rightarrow\left(x-1\right)^6=1024\)
\(\Rightarrow x=\varnothing\)