tìm a để đa thức 2x^4-3x^2+2x+a chia het x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
b: \(\dfrac{A\left(x\right)}{B\left(x\right)}=\dfrac{x^4-\dfrac{1}{2}x^3+\dfrac{1}{2}x^3-\dfrac{1}{4}x^2+\dfrac{9}{4}x^2-\dfrac{9}{8}x-\dfrac{15}{8}x+\dfrac{15}{16}+a-\dfrac{1}{16}}{2x-1}\)
Để A(x) chia hết cho B(x) thì a-1/16=0
hay a=1/16
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Giả sử thương của phép chia này là bx2 + cx + d thì ta có
2x3 - 3x2 + x + a = (x + 2)(bx2 + cx + d)
<=> 2x3 - 3x2 + x + a = bx3 + x2(2b + c) + x(2c + d) + 2d
=> b = 2; c = -7; d = 15, a = 30
Vậy a = 30
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Áp dụng định lý Bezout:
Đa thức \(2x^3-3x^2+x+a\)chia hết cho x + 2
\(\Leftrightarrow f\left(-2\right)=0\)
\(\Leftrightarrow2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)
\(\Leftrightarrow-16-12-2+a=0\)
\(\Leftrightarrow-30+a=0\Leftrightarrow a=30\)
Vậy a = 30 thì \(2x^3-3x^2+x+a\)chia hết cho x + 2
2x3-3x2+x+a | x+2
------------------|-------------
2x3-3x2 | 2x2-7x+15
2x2+4x2
-7x2+x
-7x2-14x
15x+a
15x+30
Để 2x^3-3x^2+x+a chia hết cho đa thức x+2 thì
15x+a=15x+30
<=>a=30
Vậy a= 30
gọi đa thức thứ 1 là A(x), thứ 2 là B(x), A(x):B(x)=Q(x)
-> A(x)=B(x).Q(x). Thay x= -2 có B(x)=0 -> A(-2)=0
2.(-2)^3 - 3.(-2)^2 + (-2) + a = 0
-30 + a = 0
a = 30
Chia đa thức ta được số dư là a + 8
\(\Rightarrow a+8=0\Rightarrow a=-8\)
8 thôi chứ bạn