Cho \(M=\frac{\sqrt{x}-1}{2}\)
Tìm \(x\in Z\)và \(x< 50\)để \(M\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(M=\frac{\sqrt{x}-1}{2}\) đạt GT nguyên thì \(\sqrt{x}-1⋮2\) hay \(\sqrt{x}-1=2k\left(k\in Z\right)\)
\(\Rightarrow\sqrt{x}=2k+1\Rightarrow x=\left(2k+1\right)^2\) nên x là bình phương của 1 số
\(\Rightarrow x=\left\{1;9;25;49;81;....\right\}\)
Mà \(x< 50\Rightarrow x=\left\{1;9;25;49\right\}\)
Ta có :
Để M Có giá trị Nguyên
=> \(\frac{\left(\sqrt{x}-1\right)}{2}\) Nguyên
=> \(\sqrt{x}-1\) Nguyên
=> \(\sqrt{x}\) nguyên
mà x < 50
=> x = 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49
mà \(\sqrt{x}-1\) là số nguyên
=> x = 1 ; 9 ; 25 ; 49
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)
__
Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)
\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)
a)2(x+y)=2(z+x)
=>\(x+y=z+x\)
=>y=z
=>\(\frac{y-z}{5}=\frac{0}{5}=0\)
5(y+z)=2(z+x)
5y+5z=2z+2x
mà y=z(cmt)
nên 5y+5y-2y=2x
8y=2x
x=4y
=>\(\frac{x-y}{4}=\frac{4y-y}{4}=\frac{3y}{4}\)
=>ko thỏa mãn đề bài
a ) Cho 2( x + y ) = 5( y + z ) = 3( z + x ) thì x−y4=y−z5
Theo đề bài ra ta có: \(2\left(x+y\right)=5\left(y+z\right)\Rightarrow\frac{x+y}{5}=\frac{y+z}{2}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}\)
\(5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}\Rightarrow\frac{z+x}{10}=\frac{y+z}{6}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-y-z-z-x}{15-6-10}=\frac{0}{-1}=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+y=0\\y+z=0\\z+x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)
\(\Rightarrow5x-5y=4y-4z\)(Do x,y,z=0)
\(\Rightarrow5\left(x-y\right)=4\left(y-z\right)\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)
Để \(M\inℤ\)\(\Rightarrow\)\(\sqrt{x}-1⋮2\)\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\in B\left(2\right)\)
\(\Rightarrow\)\(\sqrt{x}-1=2k\) \(\left(k\inℤ\right)\)
\(\Rightarrow\)\(\sqrt{x}=2k+1\)
\(\Rightarrow\)\(x=\left(2k+1\right)^2\)
Vì x là bình phương của một số nguyên mà \(x\ne0\) nên \(x\in\left\{1;4;9;16;25;36;49;...\right\}\)
Lại có \(x< 50\) nên \(x\in\left\{1;4;9;16;25;36;49;...\right\}\)
Vậy ...
Chúc bạn học tốt ~
Theo bài ra, ta có : \(0\le x< 50\) và \(\sqrt{x}\le\sqrt{50}\approx7\)
Để M là số nguyên thì \(\sqrt{x}-1⋮2\)
mà \(\left(1,2\right)=1\)
\(\Rightarrow\sqrt{x}\)phải là số lẻ
\(\Rightarrow\sqrt{x}\in\left\{1;3;5;7;9;...\right\}\)
Vì \(x\le7\)\(\Rightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\)
\(\Rightarrow x\in\left\{1;9;25;49\right\}\)
Vậy \(x\in\left\{1;9;25;49\right\}\)