K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2022

a: Xét tứ giác DIMN có

MI//DN

DI//MN

Do đó: DIMN là hình bình hành

b: Xét ΔCDE có IM//DE

nên CI/CD=CM/CE=1/2

=>I là trung điểm của DC

Xét ΔDCE có NM//CD

nên EN/ED=EM/EC=1/2

=>N là trung điểm của DE

Xét ΔDCE có

N,I lần lượt là trung điểm của DE,DC

nên NI là đường trung bình

=>NI//CE

28 tháng 8 2023

A B C E K H D M

a/

Ta có

\(\widehat{B}=\widehat{C}\) (góc ở đáy tg cân ABC)

EK//AB \(\Rightarrow\widehat{EKC}=\widehat{B}\) (góc đồng vị)

\(\Rightarrow\widehat{EKC}=\widehat{C}\) => tg EKC cân tại E => CE=EK

Mà AD=CE 

=> AD=EK (1)

Ta có

EK//AB => EK//AD (2)

Từ (1) và (2) => ADKE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)

=> MA=MK; MD=ME (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

b/

Ta có \(H\in\left(M;MK\right)\) => MH=MK

Mà MK=MA (cmt) 

=> MH=MK=MA

=> tg MHK cân tại M \(\Rightarrow\widehat{MHK}=\widehat{MKH}\)

\(\widehat{HMK}+\widehat{MHK}+\widehat{MKH}=\widehat{HMK}+2\widehat{MHK}=180^o\)  (tổng các góc trong của 1 tg = 180 độ)

MH=MK=MA (cmt) => tg MAH cân tại M

\(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

\(\widehat{HMK}=\widehat{MAH}+\widehat{MHA}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)

\(\Rightarrow\widehat{HMK}=2\widehat{MHA}\)

Từ \(\widehat{HMK}+2\widehat{MHK}=180^o\Rightarrow2\widehat{MHA}+2\widehat{MHK}=180^o\)

\(\Rightarrow\widehat{MHA}+\widehat{MHK}=\widehat{AHK}=90^o\Rightarrow AH\perp BC\)

Xét tg vuông ABH và tg vuông ACH có

AH chung

AB=AC (cạnh bên tg cân ABC)

=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)

=> HB=HC

 

28 tháng 8 2023

Em cảm ơn ạ

 

a: Xét tứ giác BMNP có

BM//NP

NM//BP

Do đó: BMNP là hình bình hành

Xét ΔABC có

N là trung điểm của CA

NP//AB

Do đó: P là trung điểm của BC

b: Sửa đề; HB//AP

Xét ΔABC có

N là trung điểm của AC

NM//BC

Do đó: M là trung điểm của AB

Xét tứ giác AHBP có

M là trung điểm chung của AB và HP

=>AHBP là hình bình hành

 

a: ABCD là hình chữ nhật

=>O là trung điểm chug của AC và BD; AC=BD

=>OM=ON

Xét ΔAON và ΔCOM có

OA=OC

góc AON=góc COM

ON=OM

=>ΔAON=ΔCOM

Xet tứ giác ANCM có

O là trung điểm chung của AC và NM

=>ANCM là hình bình hành

b: Xét ΔDMC có OH//MC

nên DO/OM=DH/HC

=>DH/HC=2/1=2

=>DH=2HC

Xét ΔDOH có

N là trung điểm của DO

NE//OH

=>E là trung điểm của DH

=>DE=EH=1/2DH=HC

=>EH=1/3*DC

Xét ΔMFB và ΔMCD có

góc MFB=góc MCD

góc FMB=góc CMD

=>ΔMFB đồng dạng với ΔMCD

=>FB/CD=MB/MD=1/3

=>FB=1/3CD=EH