CHứng minh: \(16^n-15n-1⋮25\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt Un = 16^n-15n-1
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được
_________________-
Với việc chứng minh Vk = 16^k - 1 chia hết cho 15
- Xét k = 1 , ta có V1 = 15 chia hết cho 15
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2)
______________
Vậy từ (1) và (2) ta có được điều phãi chứng minh
16 đồng dư với 1(mod 15)
=>16n đồng dư với 1(mod 15)
=>16n-1 đồng dư với 0(mod 15)
=>16n-1 chia hết cho 15
mà 15n chia hết cho 15
=>16n-15n-1 chia hết cho 15(đpcm)
16^n - 15n - 1 =16^n-15n-1
= 15 .[ (16^(n-1)+16^(n-2)+...+1] - 15n
=15 . [ 16^(n-1)+16^(n-2)+...+1-n]
=15 .{ [ 16^(n -1)]+[16^(n-2) -1]+...+(16-1)}
Ta có : 16^(n-1) -1\(⋮\)15
16^(n-2) -1\(⋮\)15
.....
16 -1 \(⋮\)15
=>[16^(n-1) -1]+[16^(n-2) -1]+...+(16-1) =15k (k\(\in\)N)
=>16^n-15n-1 = 15 . 15k = 225 k\(⋮\)225
(đpcm)
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
Gọi d là ƯCLN của \(15n^2+8n+6\) và \(30n^2+21n+13\)
Ta có \(15n^2+8n+6⋮d\)
\(\Rightarrow30n^2+16n+12⋮d\)
Mà \(30n^2+21n+13⋮d\)
\(\Rightarrow5n+1⋮d\left(1\right)\)
\(\Rightarrow3n\left(5n+1\right)=15n^2+3n⋮d\)
\(\Rightarrow15n^2+8n+6-15n^2-3n\)
\(=5n+6⋮d\left(2\right)\)
Từ (1) và (2) \(\Rightarrow5⋮d\)
Mà \(5n+6=5\left(n+1\right)+1⋮d\Rightarrow1⋮d\left(dpcm\right)\)
Gọi T(n) là mệnh đề cần chứng minh
*Khi n=1, ta có: \(16^1-15.1-1=0\) chia hết cho 225. Vậy T(1) đúng.
* Giả sử T(k) đúng tức là \(16^k-15k-1\) chia hết cho 225
* Chứng minh T(k+1) đúng tức là chứng minh
\(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225
Ta có: \(16^{k+1}-15\left(k+1\right)-1=16^k.16-15k-16\)
Vì: \(16^k-15k-1=n.225\)(vì chia hết cho 225)
\(\Rightarrow16^k=225n+15k+1\)
Do đó: \(16^{k+1}-15\left(k+1\right)-1=16\left(225n+15k+1\right)-15k-16=225\left(16n+k\right)\) là bội số của 225
Hay \(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225
Vậy T(k+1) đúng
Theo nguyên lí quy nạp, ta kết luận T(n) đúng với mọi n \(\in N\)
a)
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
\(A=16^n-15n-1=\left(16^n-1^n\right)-15n\)
Áp dụng hằng đẳng thức phụ :
\(a^k-b^k=\left(a-b\right)\left(a^{k-1}+a^{k-2}b+a^{k-3}b^2+.....+ab^{k-2}+b^{k-1}\right)\)
ta có : \(16^n-1^n=\left(16-1\right)\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)\)
\(=15\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)⋮15\)
Do đó \(16^n-1^n⋮15\)
Mà \(15n⋮15\) nên \(A=\left(16^n-1^n\right)-15n⋮15\)(đpcm)