Cho b2 = a.c ; c2 = b.d . Chứng minh :
a) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
b) \(\frac{a}{d}=\frac{a^3+8.b^3+125.c^3}{b^3+8.c^3+125.d^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c=0
nên a+b=-c
Ta có: \(a^2-b^2-c^2\)
\(=a^2-\left(b^2+c^2\right)\)
\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)
\(=a^2-\left(b+c\right)^2+2bc\)
\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)
\(=2bc\)
Ta có: \(b^2-c^2-a^2\)
\(=b^2-\left(c^2+a^2\right)\)
\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)
\(=b^2-\left(c+a\right)^2+2ca\)
\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)
\(=2ac\)
Ta có: \(c^2-a^2-b^2\)
\(=c^2-\left(a^2+b^2\right)\)
\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)
\(=c^2-\left(a+b\right)^2+2ab\)
\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)
\(=2ab\)
Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(=\dfrac{a^3+b^3+c^3}{2abc}\)
Ta có: \(a^3+b^3+c^3\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)\)
Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được:
\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)
\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)
Vậy: \(M=\dfrac{3}{2}\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\left(đpcm\right)\)
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
\(a,a^2+b^2=\left(a+b\right)^2-2ab=9^2-2\cdot20=41\\ b,a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=41^2-2\left(ab\right)^2\\ =1681-2\cdot400=881\\ c,\left(a-b\right)^2=a^2+b^2-2ab=41-2\cdot20=1\\ \Rightarrow a-b=1\\ \Rightarrow C=a^2-b^2=\left(a-b\right)\left(a+b\right)=9\cdot1=9\)
Do a+b+c= 0
<=> a+b= -c
=> (a+b)2= c2
Tương tự: (c+a)2= b2, (c+b)2= a2
Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)
\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)
\(=\frac{a+b+c}{-2abc}=0\)
a)=10
b)=13,3 rút gọn số thập phân trong máy tính thì =13 nha
c)=36
d)=-5
Phùng Minh Quân không biết thì đừng tk sai tôi nhá!
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\) (1)
Mặt khác,áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\) (2)
Từ (1) và (2) ta có: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\left(đpcm\right)\)
Câu b) là một câu hỏi rất hay,cũng khá hóc búa một tí. Nhưng dùng năng lực rinnegan ta thấy ngay bài này chỉ áp dụng t/c cơ bản của phân số với t/c dãy tỉ số bằng nhau
Giải
b) Từ a) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\). Áp dụng tính chất cơ bản của phân số,ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{8b^3}{8c^3}=\frac{125c^3}{125d^3}\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\) (t/c dãy tỉ số bằng nhau)
Do vậy điều cần chứng minh \(\Leftrightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(1)
Mặt khác,theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (2)
Từ (1) và (2) ta có: \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\Rightarrow\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}^{\left(đpcm\right)}\)