Cho n điểm ( với n \(\in\)N , n \(\ge\)2 ) Trong đó không có 3 điểm nào thẳng hàng. Hỏi vẽ đc bao nhiêu đường thẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ từ 1 điểm bất kì với các điểm còn lại được: 39 đoạn thẳng
- Làm như vậy với 40 điểm ta được: 39 . 40 = 1560 (đường thẳng )
- Nhưng mỗi đường thẳng được tính 2 lần
=> Số đường thẳng thực sự là: 1560 : 2 = 780 đường thẳng
b)Nếu 40 điểm không có 3 điểm nào thẳng hàng thì vẽ được 780 đường thẳng
- Với 10 không có 3 điểm nào thẳng hàng thì vẽ được:
10 . 9 : 2 = 45 ( đường thẳng )
* Nếu 10 điểm này thẳng hàng thì chỉ vẽ được 1 đường thẳng
- Do vậy số đường thẳng bị giảm đi là: 45 - 1 = 44 ( đường thẳng )
- Số đường thẳng cần tìm là: 780 - 44 = 736 ( đường thẳng )
c)Ta có: n.(n - 1) : 2 = 150
n.(n - 1) = 210
n.(n - 1) = 15 . 14
Vậy n = 15
a,Cứ 1 điểm tạo với 9 điểm còn lại 9 đường thẳng
Với 10 điểm ta có : 9. 10 = 90 đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Số đường thẳng được tạo là : 90 : 2 = 45 ( đường thẳng)
b, Cứ 1 điểm tại với n - 1 điểm còn lại số đường thẳng là:
n - 1 đường thẳng
Với n điểm ta có (n-1).n đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Vậy với n điểm trong đó không có 3 điểm nào thẳng hàng thì sẽ tạo được số đường thẳng là: (n-1).n:2
Theo bài ra ta có: (n-1).n : 2 = 28
(n-1).n = 56
(n-1).n = 7 x 8
n = 8
Kết luận n = 8 thỏa mãn yêu cầu đề bài
Số đường thẳng vẽ được:
55 = n(n+1) /2
\(\Rightarrow n\left(n+1\right)=110\Rightarrow n=10.\)
a) Chọn một điểm trong năm điểm đã cho thì ta nối điểm đó với 4 điểm còn lại tạo thành 4 đường thẳng. Làm như vậy với tất cả 5 điểm ta được 4.5 = 20 đường thẳng. Khi đó, mỗi đường thẳng được tính 2 lần (ví dụ đường thẳng AB và đường thẳng BA chỉ là một). Do đó, số đường thẳng thực tế là 20:2 = 10.
b) Lập luận tương tự ý a), thay số 5 bằng n. Ta có số đường thẳng là n ( n − 1 ) 2
Ta nối n điểm với n - 1 điểm còn lại thì ta vẽ được số đường thẳng là n( n - 1 )(đường thẳng)
Mà mỗi đường thẳng đã được tính 2 lần nên vẽ được:
\(\frac{n\left(n-1\right)}{2}\)(đường thẳng)