K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

\(a)13x\left(x-\dfrac{3}{7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}13x=0\\x-\dfrac{3}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{7}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\dfrac{3}{7}\right\}\)

b: =>x(5x-1/3)=0

=>x=0 hoặc x=1/15

e: =>x^2(x+3)^2=x^2 và x>=0

\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2\left(x+3-1\right)\left(x+3+1\right)=0\end{matrix}\right.\Leftrightarrow x=0\)

16 tháng 11 2021

a: \(x\in\left\{0;25\right\}\)

c: \(x\in\left\{0;5\right\}\)

25 tháng 11 2016

a)\(6x^2+5x-6=0\)

\(\Leftrightarrow6x^2-4x+9x-6=0\)

\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)

b)\(6x^2-13x+6=0\)

\(\Leftrightarrow6x^2-4x-9x+6=0\)

\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)

c)\(10x^2-13x-3=0\)

\(\Leftrightarrow10x^2-15x+2x-3=0\)

\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)

d)\(20x^2+19x-3=0\)

\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)

\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)

e)\(3x^2-x+6=0\)

\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)

Suy ra vô nghiệm

26 tháng 11 2016

ơn pạn nhìu nha

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với

 

11 tháng 6 2018

1/

a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)

\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)

\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)

\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)

\(D=x\)

b/ Mình xin sửa lại đề:

Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)

Tại x = 12

\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)

\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)

\(E\left(x\right)=2012-x\)

\(E\left(x\right)=2000\)

2/

a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

<=> \(2x^2-10x-3x-2x^2=26\)

<=> \(-13x=26\)

<=> \(x=-2\)

b/ Bạn vui lòng coi lại đề.

3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

\(D=-10\)

Vậy giá trị của D không phụ thuộc vào x (đpcm)

11 tháng 6 2018

Giúp mik vs^^

21 tháng 9 2017

a ) \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x=2000\) \(x=\dfrac{1}{5}\)

b ) \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)

Vậy \(x=0\) \(x=\sqrt{13}\)

c ) \(x+5x^2=0\)

\(\Leftrightarrow x\left(1+5x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x=0\) \(x=-\dfrac{1}{5}\)

d ) \(\left(x+1\right)=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy \(x=0\) \(x=-1\)

e ) \(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\\left(loại\right)\end{matrix}\right.\)

Vậy \(x=0\)

21 tháng 9 2017

a, \(5x\left(x-2000\right)-x+2000=0\)

\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-2000=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2000\end{matrix}\right.\)

b,\(x^3-13x=0\)

\(\Leftrightarrow x\left(x ^2-13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)

c,\(x+5x^2=0\)

\(\Leftrightarrow x\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\)

d,\(x+1=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

e,\(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT........

1 tháng 11 2021

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

vậy giỏi zữ vậy