tìm GTLN biết B = -3x^2-5x+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
Answer:
\(6x^2-\left(2x+3\right)\left(3x-2\right)=7\)
\(\Rightarrow6x^2-\left(6x^2+9x-4x-6\right)=7\)
\(\Rightarrow6x^2-\left(6x^2+5x-6\right)=7\)
\(\Rightarrow6x^2-6x^2-5x+6=7\)
\(\Rightarrow-5x+6=7\)
\(\Rightarrow-5x=1\)
\(\Rightarrow x=\frac{-1}{5}\)
\(5x\left(12+7\right)-3x\left(80x-5\right)=-100\)
\(\Rightarrow5x.19-240x^2+15x=-100\)
\(\Rightarrow95x-240x^2+15x=-100\)
\(\Rightarrow-240x^2+110x+100=0\)
\(\Rightarrow-24x^2-11x-10=0\)
\(\Rightarrow24\left(x^2-\frac{11}{24}x+\frac{121}{2304}\right)-\frac{1081}{96}=0\)
\(\Rightarrow24\left(x-\frac{11}{48}\right)^2-\frac{1081}{96}=0\)
\(\Rightarrow24\left(x-\frac{11}{48}\right)^2=\frac{1081}{2304}\)
\(\Rightarrow\left(x-\frac{11}{48}\right)^2=\left(\frac{\pm\sqrt{1081}}{48}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{11}{48}=\frac{\sqrt{1081}}{48}\\x-\frac{11}{48}=\frac{-\sqrt{1081}}{48}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{1081}+11}{48}\\x=\frac{11-\sqrt{1081}}{48}\end{cases}}\)
\(\left(3x-5\right)\left(7-5x\right)-\left(5x-2\right)\left(2-3x\right)=4\)
\(\Rightarrow\left(21x-15x^2-35+25x\right)-\left(10x-15x^2-4+6x\right)-4=0\)
\(\Rightarrow36x-15x^2-35-16x+15x^2+4-4=0\)
\(\Rightarrow\left(-15x^2+15x^2\right)+\left(36x-16x\right)+\left(-35+4-4\right)=0\)
\(\Rightarrow30x-35=0\)
\(\Rightarrow x=\frac{7}{6}\)
B = 2x2 + 5x + 7
= 2( x2 + 5/2x + 25/16 ) + 31/8
= 2( x + 5/4 )2 + 31/8
\(2\left(x+\frac{5}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
Đẳng thức xảy ra <=> x + 5/4 => x = -5/4
=> MinB = 31/8 <=> x = -5/4
C = 6x - x2 - 12 = -( x2 - 6x + 9 ) - 3 = -( x - 3 )2 - 3
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2-3\le-3\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxC = -3 <=> x = 3
D = -3x2 - x + 5 = -3( x2 + 1/3x + 1/36 ) + 61/12 = -3( x + 1/6 )2 + 61/12
\(-3\left(x+\frac{1}{6}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)
Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6
=> MaxD = 61/12 <=> x = -1/6
Câu 1:
\(M=x^2-3x+5\)
\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)
\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min M = 11/4 khi x=3/2
b)\(N=2x^2+3x\)
\(N=2\left(x^2+\frac{3}{2}x\right)\)
\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)
\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy MIn N = -9/8 khi x=-3/4
c)Tự làm nha
Ta có : x2 - 3x + 5
= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)
= \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)
Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)
A= (x+5/2)^2 + 3/4
nx
(x+5/2)^2 >=0 suy ra a>= 3/4
dấu bằng xảy ra khi x+5/2 = 0 <-> x=-5/2