Tìm \(n\in N\)
\(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)
\(\Rightarrow2^{30}.3^{30}< 2^n.3^n< \left(3^2\right)^{16}.2^{16}.2^{16}\)
\(\Rightarrow2^{30}.3^{30}< 2^n.3^n< 3^{32}.2^{32}\)
\(\Rightarrow30< n< 32\)
\(\Rightarrow n=31\)
Vậy : \(n=31\)
\(n=0\Rightarrow b=3\)
Với \(n\ne0\Rightarrow VP⋮2butVT\) ko chia hết cho 2 nên ko thỏa mãn
Vậy \(n=0;b=3\)
ta có :
\(\hept{\begin{cases}4^{15}.9^{15}=36^{15}=6^{30}\\18^{16}.2^{16}=36^{16}=6^{32}\end{cases}}\) mà \(2^n.3^n=6^n\Rightarrow30< n< 32\Rightarrow n=31\)
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)
Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)
\(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)
\(\Rightarrow\left(4.9\right)^{15}< \left(2.3\right)^n< \left(18.2\right)^{16}\)
\(\Rightarrow36^{15}< 6^n< 36^{16}\)
\(\Rightarrow\left(6^2\right)^{15}< 6^n< \left(6^2\right)^{16}\)
\(\Rightarrow6^{30}< 6^n< 6^{32}\Rightarrow30< n< 32\)
Mà n là số tự nhiên nên n = 31
Chúc bạn học tốt.