Tìm số hữu tỉ a : a+1/a là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x=2
=>a-5=2a
=>-a=5
=.a=-5
b: x nguyên
=>-5 chia hết cho a
=>a thuộc {1;-1;5;-5}
c: x<0
=>(a-5)/a<0
=>0<a<5
Bài 11:
Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)
Vậy: \(a+7\inƯ\left(101\right)\)
\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)
\(a+7\in\left\{101;1;-101;-1\right\}\)
\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)
Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)
Bài 12:
Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)
t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)
Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)
\(\frac{a-3}{10-a}\) là số hữu tỉ dương khi \(\frac{a-3}{10-a}>0\)
\(\Rightarrow\) \(\frac{a-3}{a-10}< 0\)
Mà \(a-3>a-10\)
\(\Rightarrow\) \(a-3>0\) và \(a-10< 0\)
\(\Rightarrow\) \(a>3\) và \(a< 10\)
\(\Rightarrow\) \(3< a< 10\)
Để -101/a+7 là số nguyên thì \(a+7\in\left\{1;-1;101;-101\right\}\)
=>\(a\in\left\{-6;-8;94;-108\right\}\)
a)
Gọi x là số cần tìm, ta có:
\(x+2>0\left(x>0\right)\)
\(\Rightarrow x-4< 0\)
\(\Rightarrow x< 4\)
\(x=\left\{1;2;3\right\}\)
b)
Gọi x là số cần tìm, khi đó:
\(x-2< 0\left(x< 0\right)\)
\(x+4>0\left(\forall x>-4\right)\)
\(\Rightarrow x=\left(-3;-2;-1\right)\)
\(A=\dfrac{x+2}{x+1}=1+\dfrac{1}{x+1}\)
Để A nguyên :
\(x+1\inƯ\left(1\right)\\ Ư\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a: Để M là số nguyên thì 5 chia hết cho căn a+1
=>căn a+1 thuộc {1;5}
=>a thuộc {0;4}
b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)
=>M là số nguyên
c: \(\sqrt{a}+1>=1\)
=>\(\dfrac{5}{\sqrt{a}+1}< =5\)
=>M<=6
\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)
=>2<=M<=6
M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)
=>\(\dfrac{5}{\sqrt{a}+1}=1\)
=>căn a+1=5
=>căn a=4
=>a=16
M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)
=>căn a+1=5/2
=>căn a=3/2
=>a=9/4
M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)
=>căn a+1=5/3
=>căn a=2/3
=>a=4/9
\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)
=>căn a+1=5/4
=>căn a=1/4
=>a=1/16
a)
Để \(\dfrac{5}{n-1}\) là số nguyên
=> \(5⋮n-1\)
=> \(n-1\inƯ\left(5\right)=\left\{5;1;-1;-5\right\}\)
=> \(n\in\left\{6;2;0;-4\right\}\)
b)
Để \(\dfrac{n-4}{n+1}\) là số nguyên
=> \(n-4⋮n+1\)
=> \(n+1-5⋮n+1\)
Vì \(n+1⋮n+1\)
=> \(5⋮n+1\)
=> \(n+1\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
=> \(n\in\left\{0;4;-2;-6\right\}\)
\(\frac{a+1}{a}=\frac{a}{a}+\frac{1}{a}=1+\frac{1}{a}\)
để \(1+\frac{1}{a}\) là số nguyên thì \(\frac{1}{a}\)là số nguyên
\(\Rightarrow1⋮a\Leftrightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a\in\left\{1;-1\right\}\)
Vậy với \(a\in\left\{1;-1\right\}\) thì \(\frac{a+1}{a}\)là số nguyên