K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Theo đề bài ta có :

\(n^{200}< 5^{300}\)( với n lớn nhất )

\(\left(n^2\right)^{100}< \left(5^3\right)^{100}\)

\(\left(n^2\right)^{100}< 125^{100}\)

\(n^2< 125\)

\(\Rightarrow n^2\in\left\{0;1;2;...;124\right\}\)

mà n lớn nhất \(\Rightarrow n^2=124\)

\(\Rightarrow n=\sqrt{124}\)

7 tháng 10 2018

ta co 5^300=(5^3)^100=125^100

         n^200=(n^2)^100

nen n^2<125 suy ra n=11

18 tháng 9 2016

Ta có: \(n^{200}=\left(n^2\right)^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

=>\(\left(n^2\right)^{100}< 125^{100}\Rightarrow n^2< 125\)

n là số nguyên lớn nhất thỏa mãn n2<125 <=> n2=121 <=> n=11

4 tháng 9 2016

Ta có:

n200 < 5300

=> (n2)100 < (53)100

=> n2 < 53 = 125

Mà n lớn nhất => n2 lớn nhất => n2 = 121

=> n = 11

4 tháng 9 2016

cám ơn bạn. ^^.

Bài 1:

                                      Giải :

Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\)   \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)

\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)

\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)

\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)

\(\Rightarrow E⋮6\)

Do \(E⋮6\)nên \(E\div6\)dư 0

Vậy \(E\div6\)có số dư bằng \(0\)

Bài 2:

                                             Giải :

Ta có:   \(n.\left(n+2\right).\left(n+7\right)\)

     \(=\left(n^2+2n\right).\left(n+7\right)\)

     \(=n^3+2n^2+7n^2+14n\)

     \(=n^3+9n^2+14n\)

     \(=n.\left(n^2+9n+14\right)\)

10 tháng 10 2021

cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13

10 tháng 8 2017

\(n^{200}=\left(n^2\right)^{100}\)

\(5^{300}=\left(5^3\right)^{100}\)

\(\Rightarrow n^2=5^3=125\Rightarrow n=\sqrt{125}=5\sqrt{5}\)

16 tháng 4 2020

brabla

16 tháng 4 2020

b) n mũ 2 + 2006 là hợp số

hai câu còn lại ko bt

Hok tốt

^_^

4 tháng 12 2021

rgergqrgqrg

rgerger