phân tích đa thức thành nhân tử
\(a^2-10a+25-y^2-4yz-4z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 - 10a + 25 - y2 - 4yz - 4z2
( a2 -10a + 52 ) - ( y2 + 4yz + 4z2 )
( a - 5 )2 - ( y + 2z )2
[ ( a - 5 ) + ( y + 2z ) ] x [ ( a - 5 ) - ( y + 2z ) ]
ở trên chỗ - ( y2 + 4yz + 4z2 ) đấy là vì tớ đặt dấu trừ trước ngoặc nên bên trong đổi dấu đấy
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a: \(=x^2\left(x-y\right)+2014\left(x-y\right)=\left(x-y\right)\left(x^2+2014\right)\)
làm a) thui nhé,b) theo đó mà làm
a) = (x-y)2 - (m-n)2 =(x-y +m-n)(x-y -m+n)
đơn giản như chơi game
b) \(a^2-10a+25-y^2-4yz-4z^2\)
\(=\left(a-5\right)^2-\left(y+2z\right)^2\)
\(=\left(a-5-y-2z\right)\left(a-5+y+2z\right)\)
\(\text{y- 7z + 4yz -28z^2 = (1 + 4z) x ()}\)
Phân tích là tìm ra ngoặc:
Ta có:
\(y-7z+4yz-28z^2\)
\(=\left(y-7z\right)+\left(4yz-28z^2\right)\)
\(=\left(y-7z\right)+4z.\left(y-7z\right)\)
\(=\left(1+4z\right).\left(y-7z\right)\)
\(=y-7z\)
Vậy thừa số cần tìm là \(y-7z\)
a, \(x^3-2x-y^3+2y\) (sửa đề)
\(=\left(x^3-y^3\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-2\right)\)
b, \(\left(x-y\right)\left(x+y\right)-4zx+4yz\)
\(=\left(x-y\right)\left(x+y\right)-\left(4zx-4yz\right)\)
\(=\left(x-y\right)\left(x+y\right)-4z\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4z\right)\)
Bạn xem lại đề câu a giúp mình nha!
anh đi anh nhớ quê nha
nhớ canh rau muống nhớ cà dầm tương
nhớ thằng đẩy bố xuống mương
bố mà bắt được bố tương vỡ mồm
x2+2xz+2xy+4yz
= ( x2+2xz ) + ( 2xy + 4yz )
= x( x + 2z ) + 2y( x +2z )
= (x+2z)(x+2y)
( x + y + z )2 + ( x + y - z )2 - 4z2
= [ ( x + y ) + z ]2 + [ ( x + y ) - z ]2 - 4z2 (1)
Đặt \(\hept{\begin{cases}x+y=a\\z=b\end{cases}}\)
(1) <=> ( a + b )2 + ( a - b )2 - 4b2
= a2 + 2ab + b2 + a2 - 2ab + b2 - 4b2
= 2a2 - 2b2
= 2( a2 - b2 )
= 2( a - b )( a + b )
= 2( x + y - z )( x + y + z )
\(a^2-10a+25-y^2-4yz-4z^2\)
\(=a^2-2.a.5+5^2-y^2-2.y.2z-\left(2z\right)^2\)
\(=\left(a-5\right)^2-\left(y+2z\right)^2\)
\(=\left(a-y-2z-5\right)\left(a+y+2z-5\right)\)
Very easy
\(a^2-10a+25-y^2-4yz-4z^2\)
\(=\left(a-5\right)^2-\left(y+2z\right)^2\)
\(=\left(a-5-y-2z\right)\left(a-5+y+2z\right)\)