(-1/16 )tất cả mũ 10 và (-1/2)tất cả mũ 500 Hãy so sánh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{2}\right)^{50}=\left[\left(\dfrac{1}{2}\right)^5\right]^{10}=\left(\dfrac{1}{32}\right)^{10}\)
1/12>1/32
=>(1/12)^10>(1/32)^10
=>(1/12)^10>(1/2)^50
Có: \(\left(\dfrac{1}{12}\right)^{10}=\dfrac{1}{12^{10}}\)
\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}=\dfrac{1}{\left(2^5\right)^{10}}=\dfrac{1}{32^{10}}\)
Do \(12< 32\Rightarrow12^{10}< 32^{10}\)
\(\Rightarrow\dfrac{1}{12^{10}}>\dfrac{1}{32^{10}}\) hay \(\left(\dfrac{1}{12}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)
\(\left(\frac{1}{2}\right)^{40}=\left(\frac{1}{2}\right)^{10\cdot4}=\left(\frac{1}{16}\right)^{10}\)
Mà ta có
\(\left(\frac{1}{32}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{32}\right)^{10}\)
Ta có :
\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)
\(\Rightarrow\frac{1}{243^9}>\frac{1}{83^{13}}\)
mình chắc chắn luôn
Bài 1: a) So sánh 2500 và 5200
Ta có: 2500= 25.100= (25)100= 32100
5200=52.100=(52)100=25100
32>25
=> 2500>5200
b) So sánh 416 và 164
Ta có: 416=44.4=(44)4=2564
256> 16
=> 416>164
Bài 2: Gọi số cần tìm là a ( a > 0; a thuộc N*)
Vì a là số tự nhiên nhỏ nhất khác 0 và chia hết cho 3;5;7;9;11
=> a thuộc BCNN(3;5;7;9;11)
Ta có: 3=3.1
5=5.1
7=7.1
9=32
11=1.11
=> BCNN(3;5;7;9;11)=5.7.32.11=3465
Vậy số cần tìm bằng 3465
Bài 1: a) So sánh 2500 và 5200
Ta có: 2500= 25.100= (25)100= 32100
5200=52.100=(52)100=25100
Vì cả 2 số trên có số mũ bằng nhau nhưng 32>25 => 32100>25100
=> 2500>5200
b) So sánh 416 và 164
Ta có: 416=44.4=(44)4=2564
Ta có: mũ của 2 số trên bằng nhau nhưng 256> 16
=> 416>164
Bài 2: Gọi số cần tìm là a ( a > 0; a thuộc N*)
Vì a là số tự nhiên nhỏ nhất khác 0 và chia hết cho 3;5;7;9;11 => a thuộc BCNN(3;5;7;9;11)
Ta có: 3=3.1
5=5.1
7=7.1
9=32
11=1.11
=> BCNN(3;5;7;9;11)=5.7.32.11=3465
Vậy số cần tìm bằng 3465
ticks nha bạn!
(100^99+99^100)^100
(100^100+99^100)^99
ta có : (100^99+99^100)^100=100^9900+99^10000
(100^100+99^100)^99=100^9900+99^9900
=)100^9900=100^9900; 99^10000>99^9900(vì 10000>9900)
=)(100^99+99^100)^100>(100^100+99^100)^99
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
bạn nào làm được thì giúp mình với còn bài này thì mình không biết làm. sorry nha
AI NÓI TỚ NÓI SAI, CÓ NÓI VỀ BÀI ĐÂU MÀ SAI ĐIÊN À MẤY BẠN KIA
ta có:\(\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1^4}{2^4}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}=\dfrac{1^{40}}{12^{40}}=\dfrac{1}{2^{40}}\)
ta có:
\(\left(\dfrac{-1}{2}\right)^{500}=\left(\dfrac{1}{2}\right)^{500}=\dfrac{1^{500}}{2^{500}}=\dfrac{1}{2^{500}}\)
Vì 40<500
⇒2\(^{40}< 2^{500}\)
⇒\(\dfrac{1}{2^{40}}>\dfrac{1}{2^{500}}\)
⇒\(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)
Vậy \(\left(\dfrac{-1}{16}\right)^{10}>\left(\dfrac{-1}{2}\right)^{500}\)
\(+,\left(\dfrac{-1}{16}\right)^{10}=\left(\dfrac{\left(-1\right)^4}{2^4}\right)^{10}=\left[\left(\dfrac{-1}{2}\right)^4\right]^{10}=\left(\dfrac{-1}{2}\right)^{40}\)
Vì 40<500→\(\left(\dfrac{-1}{2}\right)^{40}< \left(\dfrac{-1}{2}\right)^{500}hay\left(\dfrac{-1}{16}\right)^{10}< \left(\dfrac{-1}{2}\right)^{500}\)