TÍNH
A=2^2+4^2+6^2+...+20^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}\)
\(=\left(5+2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(5-2\sqrt{6}\right)\)
\(=\sqrt{3}-\sqrt{2}\)
a) \(\dfrac{-3}{20}\) + \(\dfrac{-7}{4}\) =\(\dfrac{-3}{20}\) + \(\dfrac{-35}{20}\) = -2
b) 6 và \(\dfrac{2}{3}\) - 4 và \(\dfrac{2}{3}\) = 2
c) \(\dfrac{-3}{10}\) + \(\dfrac{7}{12}\) = \(\dfrac{-18}{60}\) + \(\dfrac{35}{60}\) =\(\dfrac{17}{60}\)
d) \(\dfrac{35}{-9}\) . \(\dfrac{81}{7}\) = \(\dfrac{-35}{9}\) . \(\dfrac{81}{7}\) = 45
e) \(\dfrac{-2}{5}\) - \(\dfrac{-3}{4}\) = \(\dfrac{-8}{20}\) - \(\dfrac{-15}{20}\) = \(\dfrac{-8}{20}\) + \(\dfrac{15}{20}\) =\(\dfrac{7}{20}\)
f) \(\dfrac{5}{23}\) . \(\dfrac{7}{26}\) + \(\dfrac{5}{23}\) .\(\dfrac{9}{26}\) = \(\dfrac{5}{23}\) . ( \(\dfrac{7}{26}\) + \(\dfrac{9}{26}\) )= \(\dfrac{5}{23}\) . \(\dfrac{8}{13}\) = \(\dfrac{40}{299}\)
g) \(\dfrac{-3}{12}\) : \(\dfrac{4}{15}\) =\(\dfrac{-3}{12}\) . \(\dfrac{15}{4}\) =\(\dfrac{-5}{8}\)
h) 1 và \(\dfrac{1}{6}\) - 3 và \(\dfrac{1}{3}\) =\(\dfrac{7}{6}\) -\(\dfrac{10}{3}\) = \(\dfrac{-13}{6}\)
i) \(\dfrac{-2}{5}\) . (-3) + \(\dfrac{3}{8}\) . \(\dfrac{4}{-10}\) =(\(\dfrac{-2}{5}\) .\(\dfrac{-4}{10}\)) + [(-3) . \(\dfrac{3}{8}\)
= \(\dfrac{4}{25}\) + \(\dfrac{-9}{8}\) = \(\dfrac{32}{200}\) + \(\dfrac{-225}{200}\) = \(\dfrac{-193}{200}\)
j) \(\dfrac{-13}{17}\) + (\(\dfrac{13}{-21}\) + \(\dfrac{-4}{17}\) )
= ( \(\dfrac{-13}{17}\) + \(\dfrac{-4}{17}\) )+\(\dfrac{-13}{21}\)
= -1+\(\dfrac{-13}{21}\)
= \(\dfrac{-21}{21}\) + \(\dfrac{-13}{21}\) = \(\dfrac{-34}{21}\)
Khôi nguyễn
\(A=5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9\)
\(A=5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9\)
\(A=5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}\)
\(A=5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}\)
\(A=2^{29}\cdot3^{18}\cdot\left(5\cdot2^1\cdot1-1\cdot3^2\right)\)
\(A=2^{29}\cdot3^{18}\cdot\left(5-9\right)\)
\(A=-2^2\cdot2^{29}\cdot3^{18}\)
\(A=-2^{31}\cdot3^{18}\)
_______________
\(B=5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6\)
\(B=5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6\)
\(B=5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}\)
\(B=2^{28}\cdot3^{18}\cdot\left(5\cdot1\cdot3-7\cdot2\cdot1\right)\)
\(B=2^{28}\cdot3^{18}\cdot\left(15-14\right)\)
\(B=2^{28}\cdot3^{18}\)
Ta có: \(A:B\)
\(=\left(-2^{31}\cdot3^{18}\right):\left(2^{28}\cdot3^{18}\right)\)
\(=\left(-2^{31}:2^{28}\right)\cdot\left(3^{18}:3^{18}\right)\)
\(=-2^3\cdot1\)
\(=-8\)
Giải:
a) \(75\%+1,2-2+\dfrac{1}{5}+2018^0\)
=\(\dfrac{3}{4}+\dfrac{6}{5}-2+\dfrac{1}{5}+1\)
=\(\left(\dfrac{6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{3}{4}-2+1\right)\)
=\(\dfrac{7}{5}+\dfrac{-1}{4}\)
=\(\dfrac{23}{20}\)
b) \(\left(\dfrac{-4}{3}+0,75\right):\dfrac{2017}{2018}+\left(1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left(\dfrac{-4}{3}+0,75+1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\)
=\(\left[\left(\dfrac{-4}{3}+1+\dfrac{1}{3}\right)+\left(0,75-75\%\right)\right]:\dfrac{2017}{2018}\)
=\(\left[0+0\right]:\dfrac{2017}{2018}\)
=0\(:\dfrac{2017}{2018}\)
=0
c)\(\left(2018-\dfrac{1}{3}-\dfrac{2}{4}-\dfrac{3}{5}-\dfrac{4}{6}-...-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(1-\dfrac{1}{3}-1-\dfrac{2}{4}-1-\dfrac{3}{5}-1-\dfrac{4}{6}-...-1-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)
=\(\left(\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-\dfrac{2}{6}-...-\dfrac{2}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left[2.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[\dfrac{5}{5}.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[5.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(10.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =-10
\(a, 2023 - 25^2 : 5^3 + 27\)
\(=\left(2023+27\right)-\left(5^2\right)^2:5^3\)
\(=2050-5^4:5^3\)
\(=2050-5\)
\(=2045\)
___
\(b,60:\left[7\cdot\left(11^2-20\cdot6\right)+5\right]\)
\(=60:\left[7\cdot\left(121-120\right)+5\right]\)
\(=60:\left(7\cdot1+5\right)\)
\(=60:\left(7+5\right)\)
\(=60:12\)
\(=5\)
#Toru
a) \(2023-25^2:5^3+27\)
\(=2023-5^4:5^3+27\)
\(=2023-5+27\)
\(=2018+27\)
\(=2045\)
b) \(60:\left[7.\left(11^2-20.6\right)+5\right]\)
\(=60:\left[7.\left(121-120\right)+5\right]\)
\(=60:\left[7.1+5\right]\)
\(=60:\left[7+5\right]\)
\(=60:12\)
\(=5\)
\(#WendyDang\)
\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)
a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)
\(=15\sqrt{3}\)
b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)
=-6
a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)
\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)
=1
b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)
=1
A=4+16+36+64+100+144+196+256+324+400
A=20+100+100+340+580+400
A=320+920+400
A=1240+400
A=1640
\(A=2^2+4^2+6^2+...+20^2.\)
\(=2^2\left(1+2^2+3^2+...+10^2\right)\)
\(=2^2\left[1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+10\left(11-1\right)\right]\)
\(=2^2\left[\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)\right]\)
\(=2^2\left[\frac{1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)}{3}-\frac{10\left(10+1\right)}{2}\right]\)
\(=2^2\left[\frac{1.2.3-0.1.2+2.3.4-1.2.3+...+10.11.12-9.10.11}{3}-55\right]\)
\(=2^2\left(\frac{10.11.12}{3}-55\right)=2^2.275=1100\)