K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Đặt \(P=x+y+\frac{1}{x}+\frac{1}{y}\)

\(=x+y+\frac{1}{4x}+\frac{3}{4x}+\frac{1}{4y}+\frac{3}{4y}\)

\(=\left(x+\frac{1}{4x}\right)+\left(y+\frac{1}{4y}\right)+\left(\frac{3}{4x}+\frac{3}{4y}\right)\)

Áp dụng bđt AM-GM cho 2 số thực dương x,y ta được:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=1\left(1\right)\)

\(y+\frac{1}{4y}\ge2\sqrt{y.\frac{1}{4y}}=1\left(2\right)\)

\(\frac{3}{4x}+\frac{3}{4y}\ge2\sqrt{\frac{3}{4x}.\frac{3}{4y}}=\frac{3}{2\sqrt{xy}}\left(3\right)\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{1}{2}\left(4\right)\)

Thay (4) vào (3) ta có \(\frac{3}{4x}+\frac{3}{4y}\ge3\left(5\right)\)

(1)+(2)+(5) ta được: \(P\ge3\)

Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

29 tháng 9 2016

\(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)

25 tháng 3 2019

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)

Áp dụng BĐT cô si ,ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)

Vậy ta được đpcm

ta có:

\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)

Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha 

21 tháng 7 2016

a) câu này dài quá à, mình ngại làm lắm

Áp dụng bđt này: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

b)\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)\)

\(=\left[\left(1+x^2\right)+x\right]\left(1-x^2\right)\left[\left(x^2+1\right)-x\right]\)

\(=\left[\left(1+x^2\right)^2-x^2\right]\left(1-x^2\right)\)

\(=\left(1+2x^2+x^4-x^2\right)\left(1-x^2\right)\)

\(=\left(x^4+x^2+1\right)\left(1-x^2\right)\)

16 tháng 8 2015

a) (x^2+2xy+y^2) : (x+y)

=(x+y)2:(x+y)

=x+y

b) (125x^3+1) : (5x+1)

=(5x+1)(25x2-5x+1):(5x+1)

=25x2-5x+1

 

c) (x^2-2xy+y^2) : (y-x)

=(x-y)2:(y-x)

=-(x-y)2:(x-y)

=-(x-y)

=-x+y

19 tháng 10 2019

a) (x+5)(y-2)=13

Ta có: 13=1.13=-1.(-13)

Ta có bảng:

x+51-1 
y-213-13 
x-4-6 
y15-11 

Vậy các cặp(x;y) thỏa mãn là: (-4;15);(-6;-11)

Hok "tuốt" nha^^

NV
23 tháng 3 2022

\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)

Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)

\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)

\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)

\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)

23 tháng 3 2022

Dạ , em cám ơn thầy Lâm nhiều ạ!

 

6 tháng 2 2019

Em chỉ biết chữa lại thôi chứ không biết tìm lỗi sai =_=. Anh/chị thông cảm ạ.

      Lời giải:

Lời giải trên chưa chính xác.

*Chữa lại:

\(M=\left(\frac{4}{x}+9x\right)+y-9x\ge12+y-9x\)

\(\ge12+y-9\left(1-\frac{1}{y}\right)=12+y-9+\frac{9}{y}\)

\(=3+\left(y+\frac{9}{y}\right)\ge3+2\sqrt{y.\frac{9}{y}}=9\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=3\)

Vậy ....