Cm biểu thức sau luôn dương 5x22 - 10x + 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,B=x^2-10x+27\)
\(=x^2-2.x.5+5^2+2\)
\(=\left(x-5\right)^2+2\)
Ta thấy: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+2\ge2\forall x\)
hay B luôn dương
\(4,D=-16x^2+16x-9\)
\(=-\left[\left(4x\right)^2-2.4x.2+2^2\right]-5\)
\(=-\left(4x-2\right)^2-5\)
Ta thấy: \(\left(4x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(4x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(4x-2\right)^2-5\le-5\forall x\)
hay D luôn âm.
2: B=x^2-10x+25+2
=(x-5)^2+2>=2>0 với mọi x
=>B luôn dương với mọi x
4: D=-16x^2+16x-9
=-(16x^2-16x+9)
=-(16x^2-16x+4+5)
=-(4x-2)^2-5<=-5<0
=>D luôn âm với mọi x
Ta có ;
\(2x^2-10x+27\)
\(=x^2-2x+1+x^2-8x+16+10\)
\(=\left(x-1\right)^2+\left(x-4\right)^2+10\)
Vì \(\left(x-1\right)^2\ge0\forall x\)và \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(x-4\right)^2+10\ge10\forall x\)
=> Biểu thức đã cho luôn dương .
( P.s : Bạn có thể tách theo kiểu khác ).
\(2x^2-10x+27\)
\(=x^2+x^2-4x-6x+4+9+14\)
\(=\left(x^2-4x+4\right)+\left(x^2-6x+9\right)+14\)
\(=\left(x-2\right)^2+\left(x-3\right)^2+14\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(x-3\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+\left(x-3\right)^2+14\ge14\forall x\)
=> Biểu thức luôn dương vớ mọi x .
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
1/
\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)
\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)
\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)
2/
\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)
\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)
\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)
Ta có :
\(B=x^2-10x+28\)
\(\Rightarrow B=x^2-2.x.5+25+3\)
\(\Rightarrow B=\left(x+5\right)^2+3\)
Vì \(\left(x+5\right)\ge0\) ( với mọi x )
\(\Rightarrow\left(x+5\right)+3\ge3\)
=> đpcm
C = -3x2 - 6x - 12
= -3( x2 + 2x + 1 ) - 9
= -3( x + 1 )2 - 9 ≤ -9 < 0 ∀ x ( đpcm )
D = -4x2 - 12x - 15
= -4( x2 + 3x + 9/4 ) - 6
= -4( x + 3/2 )2 - 6 ≤ -6 < 0 ∀ x ( đpcm )
E = -30 - 5x2 + 10x
= -5( x2 - 2x + 1 ) - 25
= -5( x - 1 )2 - 25 ≤ -25 < 0 ∀ x ( đpcm )
\(C=-3x^2-6x-12\)
\(\Rightarrow C=-\left(3x^2+6x+12\right)\)
\(\Rightarrow C=-\left(3x^2+6x+3+9\right)\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow3\left(x+1\right)^2+9\ge9\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\le-9\)
=> Đpcm
\(D=-4x^2-12x-15\)
\(\Rightarrow D=-\left(4x^2+12x+15\right)\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\frac{3}{2}\right)^2+6\ge6\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\le-6\)
=> Đpcm
\(E=-30-5x^2+10x\)
\(\Rightarrow E=-\left(5x^2-10x+30\right)\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow5\left(x-1\right)^2+25\ge25\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\le-25\)
=> Đpcm
\(4x^2-x+\frac{1}{2}\)
\(=\left(2x\right)^2-x.2.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)
\(=\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}.Với\forall x\in R\)
\(\RightarrowĐPCM\)
4x^2-x +1/2
= (2x -1/2)^2 +1/4 > 1/4 với mọi x
vậy 4x^2 -x +1/2 luôn có giá trị dương với mọi x
\(5x^2-10x+15=5\left(x^2-2x+1\right)+10=5\left(x-1\right)^2+10\)
Vì \(\left(x-1\right)^2\ge0\forall x\Rightarrow5\left(x-1\right)^2\ge0\forall x\)
Mà: \(10>0\Rightarrow5\left(x-1\right)^2+10>0\forall x\)\(\Rightarrow5x^2-10x+15>0\Rightarrowđpcm\)