\(\left(2x-3\right)^2=\left|3-2x\right|\)
Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
NX: 2x+3; 5(2x+3) và 2(2x+3) cùng dấu
+TH1: 2x+3 \(\ge\)0 => x \(\ge\frac{-3}{2}\)
=> 5(2x+3), 2(2x+3) \(\ge\)0
=> |5(2x+3)| = 5(2x+3); |2(2x+3)| = 2(2x+3); |2x+3| = 2x+3
=> (2x+3)(5+2+1) = 16
=> 2x+3 = 2
=> 2x = -1
=> x = -1/2 (t/m)
+ TH2: 2x+3 < 0 => x < -3/2
cmtt => -5(2x+3) - 2(2x+3) - (2x+3) = 16
=> (2x+3)(-5-2-1) = 16
=> 2x+3 = -2
=> 2x = -5
=> x = -5/2 (t/m)
/8(2x+3/ = 16
/2x+3/=2
2x+3=2 hoặc 2x+3=-2
2x=-1 hoặc 2x=-5
x=-1/2 hoặc x=-5/2
bạn trả lời nhé
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1-3x^2=54\)
=>\(9x^3+6x^2+27x+28-9x^3-6x^2-x=54\)
=>26x+28=54
=>26x=26
=>x=26/26=1
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
\(\left(2x-3\right)^2+2\left(4x^2-9\right)+\left(2x+3\right)^2=0\\ \Leftrightarrow\left(2x-3\right)^2+2\left(2x-3\right)\left(2x+3\right)+\left(2x+3\right)^2=0\\ \Leftrightarrow\left[\left(2x-3\right)+\left(2x+3\right)\right]^2=0\\ \Leftrightarrow\left(4x\right)^2=0\\ \Leftrightarrow16x^2=0\Leftrightarrow x=0\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
(x-3)(-2x+5)-2x(x-4)+(x-3)=(x-2)(x-1)-(x2-5x)
<=>-2x2+11x-15-2x2+8x+x-3=x2-3x+2-x2+5x
<=>-4x2+20x-18=2x+2
<=>-4x2+20x-18-2x-2=0
<=>-4x2+18x-20=0
<=>-4x2+8x+10x-20=0
<=>-4x.(x-2)+10.(x-2)=0
<=>(x-2)(-4x+10)=0
<=>x-2=0 hoặc -4x+10=0
<=>x=2 hoặc x=5/2
a)TH1: \(2x-3>0;3x+2>0\)
\(=>2x-3-3x-2=0\\ =>-x-5=0\\ =>-x=5=>x=-5\)
TH2: \(2x-3< 0;3x+2< 0\)
\(=>-2x+3+3x+2=0\\ =>x+5=0\\ =>x=-5\)
Cả 2 TH ra \(x=-5=>x=-5\)
b)TH1 \(\dfrac{1}{2}x>0\)
\(=>\dfrac{1}{2}x=3-2x\\ =>3-2x-\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x-\dfrac{1}{2}x=3\\ =>\dfrac{3}{2}x=3\\ =>x=2\)
TH2 \(\dfrac{1}{2}x< 0\)
\(=>-\dfrac{1}{2}x=3-2x\\ =>3-2x+\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x+\dfrac{1}{2}x=3\\ =>\dfrac{5}{2}x=3\\ =>x=\dfrac{6}{5}\)
\(=>x=2;\dfrac{6}{5}\)
a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)
\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)
\(\Leftrightarrow8x^2+4x+11=0\)
\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)
Vì Δ<0 nên phương trình vô nghiệm
b.
PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)
\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)
\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)
\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)
$\Leftrightarrow 5x-\frac{15}{4}=0$
$\Leftrightarrow x=\frac{3}{4}$
\(\left(2x-3\right)^2=\left|3-2x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3-2x\\2x-3=2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=6\\0x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\\text{vô số nghiệm}\end{cases}}}\)
Vậy \(S=\left\{x\in R\right\}\)