K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

\(\left(2x-3\right)^2=\left|3-2x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=3-2x\\2x-3=2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=6\\0x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\\text{vô số nghiệm}\end{cases}}}\)

Vậy \(S=\left\{x\in R\right\}\)

16 tháng 12 2022

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

16 tháng 12 2022

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

24 tháng 2 2020

NX: 2x+3; 5(2x+3) và 2(2x+3)  cùng dấu

+TH1: 2x+3 \(\ge\)0 => x \(\ge\frac{-3}{2}\)

=> 5(2x+3), 2(2x+3) \(\ge\)0

=> |5(2x+3)| = 5(2x+3); |2(2x+3)| = 2(2x+3); |2x+3| = 2x+3

=> (2x+3)(5+2+1) = 16

=> 2x+3 = 2

=> 2x = -1

=> x = -1/2 (t/m)

+ TH2: 2x+3 < 0 => x < -3/2

cmtt => -5(2x+3) - 2(2x+3) - (2x+3) = 16

=> (2x+3)(-5-2-1) = 16

=> 2x+3 = -2

=> 2x = -5

=> x = -5/2 (t/m)

24 tháng 2 2020

/8(2x+3/ = 16

/2x+3/=2

2x+3=2 hoặc 2x+3=-2

2x=-1 hoặc 2x=-5

x=-1/2 hoặc x=-5/2

bạn trả lời nhé

15 tháng 12 2023

\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=54\)

\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1-3x^2=54\)

=>\(9x^3+6x^2+27x+28-9x^3-6x^2-x=54\)

=>26x+28=54

=>26x=26

=>x=26/26=1

a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)

\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)

\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)

13 tháng 12 2023

\(\left(2x-3\right)^2+2\left(4x^2-9\right)+\left(2x+3\right)^2=0\\ \Leftrightarrow\left(2x-3\right)^2+2\left(2x-3\right)\left(2x+3\right)+\left(2x+3\right)^2=0\\ \Leftrightarrow\left[\left(2x-3\right)+\left(2x+3\right)\right]^2=0\\ \Leftrightarrow\left(4x\right)^2=0\\ \Leftrightarrow16x^2=0\Leftrightarrow x=0\)

11 tháng 11 2021

a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)

\(\Rightarrow3x-6x^2+6x+14=29\)

\(\Rightarrow-6x^2+9x-15=0\)

\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)

\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)

Vậy \(S=\varnothing\)

11 tháng 11 2021

a. \(2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

26 tháng 12 2021

b: \(=2x^2-3x+10x-15=2x^2+7x-15\)

27 tháng 7 2015

(x-3)(-2x+5)-2x(x-4)+(x-3)=(x-2)(x-1)-(x2-5x)

<=>-2x2+11x-15-2x2+8x+x-3=x2-3x+2-x2+5x

<=>-4x2+20x-18=2x+2

<=>-4x2+20x-18-2x-2=0

<=>-4x2+18x-20=0

<=>-4x2+8x+10x-20=0

<=>-4x.(x-2)+10.(x-2)=0

<=>(x-2)(-4x+10)=0

<=>x-2=0 hoặc -4x+10=0

<=>x=2 hoặc x=5/2

10 tháng 3 2022

a)TH1: \(2x-3>0;3x+2>0\)

\(=>2x-3-3x-2=0\\ =>-x-5=0\\ =>-x=5=>x=-5\)

TH2: \(2x-3< 0;3x+2< 0\)

\(=>-2x+3+3x+2=0\\ =>x+5=0\\ =>x=-5\)

Cả 2 TH ra \(x=-5=>x=-5\)

b)TH1 \(\dfrac{1}{2}x>0\)

\(=>\dfrac{1}{2}x=3-2x\\ =>3-2x-\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x-\dfrac{1}{2}x=3\\ =>\dfrac{3}{2}x=3\\ =>x=2\)

TH2 \(\dfrac{1}{2}x< 0\)

\(=>-\dfrac{1}{2}x=3-2x\\ =>3-2x+\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x+\dfrac{1}{2}x=3\\ =>\dfrac{5}{2}x=3\\ =>x=\dfrac{6}{5}\)

\(=>x=2;\dfrac{6}{5}\)

:V lập 2 ý là làm đc á em 

a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)

\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)

\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)

\(\Leftrightarrow8x^2+4x+11=0\)

\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)

Vì Δ<0 nên phương trình vô nghiệm

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

b.

PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)

\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)

\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)

\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)

$\Leftrightarrow 5x-\frac{15}{4}=0$

$\Leftrightarrow x=\frac{3}{4}$