tìm x,y,z khác 0 biết \(\dfrac{x}{y+z+1}=\dfrac{ỹ}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)
Đẳng thức đã cho tương đương với:
\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)
\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)
\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).
Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).
Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0)
Ta có \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\)
\(\Leftrightarrow\dfrac{\left(yz\right)^2+\left(xz\right)^2+\left(xy\right)^2+2xyz}{\left(xyz\right)^2}=1\)
<=> (xy)2 + (yz)2 + (zx)2 + 2xyz = (xyz)2
<=> (xy)2 + (yz)2 + (xz)2 + 2xyz(x + y + z) = (xyz)2
<=> (xy + yz + zx)2 = (xyz)2
<=> \(\left[{}\begin{matrix}xy+yz+zx=xyz\\xy+yz+zx=-xyz\end{matrix}\right.\)
+) Khi xy + yz + zx = -xyz
=> \(\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=-1< 0\left(\text{loại}\right)\)
=> xy + yz + zx = xyz
<=> \(xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=xyz\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1\right)=0\)
<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
<=> \(\dfrac{x+y}{xy}=\dfrac{-\left(x+y\right)}{\left(x+y+z\right)z}\)
<=> \(\left(x+y\right)\left(\dfrac{1}{xz+yz+z^2}+\dfrac{1}{xy}\right)=0\)
<=> \(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(zx+yz+z^2\right)xy}=0\)
<=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
Khi x = -y => y = 1 => P = 1
Tương tự y = -z ; z = -x được P = 1
Vậy P = 1
Áp dụng t/c dtsbn ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)
\(B=\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹ+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)
\(B=\dfrac{yz\left(x+2xy+1\right)}{yz\left(x+xy+xz+1\right)}+\dfrac{xz\left(y+2yz+1\right)}{xz\left(y+yz+ỹ+1\right)}+\dfrac{xy\left(z+2zx+1\right)}{xy\left(z+zx+zy+1\right)}\)
\(B=\dfrac{\left(1+y\right)+y\left(1+z\right)}{\left(1+y\right)\left(1+z\right)}+\dfrac{\left(1+z\right)+z\left(1+x\right)}{\left(1+z\right)\left(1+x\right)}+\dfrac{\left(1+x\right)+x\left(1+y\right)}{\left(1+x\right)\left(1+y\right)}\)
\(B=\dfrac{y}{1+y}+\dfrac{1}{1+z}+\dfrac{1}{1+x}+\dfrac{z}{1+z}+\dfrac{1}{1+y}+\dfrac{x}{1+x}\)
\(B=\left(\dfrac{y}{1+y}+\dfrac{1}{1+y}\right)+\left(\dfrac{1}{1+z}+\dfrac{z}{1+z}\right)+\left(\dfrac{x}{1+x}+\dfrac{1}{1+x}\right)\)
\(B=1+1+1\)
\(B=3\)
Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\Rightarrow y+z+1=2x\Rightarrow y+z=2x-1\left(1\right)\)
\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\Rightarrow x+z+1=2y\Rightarrow x+z=2y-1\left(2\right)\)
\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\Rightarrow x+y-2=2z\)
\(x+y+z=\dfrac{1}{2}\left(3\right)\)
Thay (1) vào (3) ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow x+2x-1=\dfrac{1}{2}\\ \Rightarrow3x=\dfrac{3}{2}\\ \Rightarrow x=\dfrac{1}{2}\)
Thay (2) vào (3) ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow y+2y-1=\dfrac{1}{2}\\ \Rightarrow3y=\dfrac{3}{2}\\ \Rightarrow y=\dfrac{1}{2}\)
Ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+z=\dfrac{1}{2}\\ \Rightarrow z=-\dfrac{1}{2}\)
TH1: \(x+y+z=0\Rightarrow x=y=z=0\)
TH2: \(x+y+z\ne0\)
\(x+y+z=\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x+2y+2z=1\\2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\2x+2y+2z=3y+3z+1\\2x+2y+2z=3x+3z+1\\2x+2y+2z=3x+3y-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\y+z=0\\x+z=0\\x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2.1+2z=1\\y=-z\\x=-z\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}z=-\dfrac{1}{2}\\x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(0;0;0\right);\left(\dfrac{1}{2};\dfrac{1}{2};-\dfrac{1}{2}\right)\)
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}=\dfrac{x+y+z}{\left(y+z+1\right)+\left(x+z+1\right)+\left(x+y-2\right)}\)
\(=\dfrac{x+y+z}{2x+2y+2z}\)
\(TH1:x+y+z=0\)
⇒ \(\dfrac{x+y+z}{1}=0\)
⇒ \(x=y=z=0\)(loại vì trái với điều kiện đề bài )
\(TH2:z+y+z\)≠ 0
⇒ \(\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2.\left(x+y+z\right)}=\dfrac{1}{2}\)
Vậy \(x+y+z=\dfrac{1}{2}\)
\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\) ⇒ \(2x=y+z+1\)⇒\(2x=y+z+2\left(x+y+z\right)=2x+3y+3z\)
⇒ \(3y+3z=0\) ⇒ \(y+z=0\) ⇒ \(2x=1\) ⇒ \(x=\dfrac{1}{2}\)
\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\) ⇒ \(2y=x+z+1=x+z+2\left(x+y+z\right)=2y+3x+3z\)
⇒ \(3x+3z=0\) ⇒ \(x+z=0\) ⇒ \(2y=1\) ⇒ \(y=\dfrac{1}{2}\)
\(x+z=0\) ; \(x=\dfrac{1}{2}\)
⇒ \(z=0-\dfrac{1}{2}=\dfrac{-1}{2}\)
Vậy \(x=\dfrac{1}{2}\) ; \(y=\dfrac{1}{2}\) ; \(z=\dfrac{-1}{2}\)