(4y+z+4)2 ai giải giúp tôi với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+y^2-4x-2y+6\)
\(=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+1\)
Ta có: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+1\ge1\forall x,y\)
Hay: \(x^2+y^2-4x-2y+6\ge1\)
\(b,x^2+4y^2+z^2-4x+4y-8z+25\)
\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+4\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\)
Vì: \(\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\ge4\forall x,y,z\)
Hay: \(x^2+4y^2+z^2-4x+4y-8z+25\ge4\)
=.= hok tốt !!
1,=>2x-5=15 hoặc 2x-5=-15
...(xét 2 trường hợp rồi tự làm nhé)
2,2xy+2y+4y+4=0
x.(2y+2)+4(y+1)=0=>x(2y+2)=0 hoặc 4(y+1)=0
...(tự làm )
3,x+3=(x-2)+5
do x-2 chia hết cho x-2 mà x+3 chia hết cho x-2
=>5 chia hết cho x-2 =>x-2 thuộc {1;-1;5;-5}=>x thuộc {3;1;7;-3}
4, (y-z)+(z+x)=-10+11
(y+x)+(z-z)=1
y+x=1
kết hợp với x-y=-9 ta đưa ra bài toán tổng hiệu và tìm x và y .
thay x;y vào các điều kiện của bài toán ta tìm được x;y;z
5,xy=x+y
xy-x-y=0
x(y-1)-y=0
x(y-1)-y+1=1( cộng cả 2 vế vs 1)
x(y-1)-(y-1)=1
(y-1)(x-1)=1
=>có 2 trường hợp :
TH1:y-1=1 ; x-1=1
TH2:y-1=-1 ; x-1=-1
bạn tự tìm x;y nhé
TICK MÌNH NHÉ . XIN LỖI VÌ KO GIẢI CỤ THỂ CHO BẠN ĐƯỢC VÌ MÌNH RẤT BẬN
ta có x^2 + 4x - 4y^2 + 8y = x^2 + 4x + 4 - ( 4y^2 - 8y^2 + 4) = (x+2)^2 - (2y-2)^2
x = 5 ; y = 0
3x + 4y - xy = 15
15 + 0 - 0 = 15
=> Suy đoán thui !!!
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
Ta có: \(\frac{2003.2004}{2003.2004}=1\)
1+1=2
Vậy \(\frac{2003.2004}{2003.2004}\)+1 > \(\frac{2004}{2005}\)