K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(a,x^2+y^2-4x-2y+6\)

\(=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+1\ge1\forall x,y\)

Hay: \(x^2+y^2-4x-2y+6\ge1\)

\(b,x^2+4y^2+z^2-4x+4y-8z+25\)

\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+4\)

\(=\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\)

Vì: \(\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2\ge0\forall x,y,z\)

\(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\ge4\forall x,y,z\)

Hay: \(x^2+4y^2+z^2-4x+4y-8z+25\ge4\)

=.= hok tốt !!

30 tháng 7 2018

Chúc bạn có 1 ngày vui vẻ!!!

20 tháng 1 2016

1,=>2x-5=15 hoặc 2x-5=-15

...(xét 2 trường hợp rồi tự làm nhé)

2,2xy+2y+4y+4=0

x.(2y+2)+4(y+1)=0=>x(2y+2)=0 hoặc 4(y+1)=0

...(tự làm )

3,x+3=(x-2)+5

do x-2 chia hết cho x-2 mà x+3 chia hết cho x-2

=>5 chia hết cho x-2 =>x-2 thuộc {1;-1;5;-5}=>x thuộc {3;1;7;-3}

4, (y-z)+(z+x)=-10+11

(y+x)+(z-z)=1

y+x=1

kết hợp với x-y=-9 ta đưa ra bài toán tổng hiệu và tìm x và y .

thay x;y vào các điều kiện của bài toán ta tìm được x;y;z

5,xy=x+y

xy-x-y=0

x(y-1)-y=0

x(y-1)-y+1=1( cộng cả 2 vế vs 1)

x(y-1)-(y-1)=1

(y-1)(x-1)=1

=>có 2 trường hợp :

TH1:y-1=1 ; x-1=1

TH2:y-1=-1 ; x-1=-1

bạn tự tìm x;y nhé 

TICK MÌNH NHÉ . XIN LỖI VÌ KO GIẢI CỤ THỂ CHO BẠN ĐƯỢC VÌ MÌNH RẤT BẬN

20 tháng 1 2016

bài ko khó nhưng mà nhiều quá

4 tháng 9 2016

ta có x^2 + 4x - 4y^2 + 8y = x^2 + 4x + 4 - ( 4y^2 - 8y^2 + 4) = (x+2)^2 - (2y-2)^2   

11 tháng 2 2016

x = 5 ; y = 0

3x + 4y - xy = 15

15 + 0  -  0 = 15

=> Suy đoán thui !!!

11 tháng 2 2016

bai toan nay kho

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

1 tháng 7 2016

Ta có: \(\frac{2003.2004}{2003.2004}=1\)

1+1=2

Vậy \(\frac{2003.2004}{2003.2004}\)+1 > \(\frac{2004}{2005}\)

7 tháng 1 2022

TL: dấu này >