(x+1)2+(\(\frac{3}{4}\)-y)2 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ơi bn vào link này nhek bài thứ 2 từ cuối lên nhek https://diendantoanhoc.net/topic/151447-cho-x3-y3-3x2-y2-4xy-4-0-xy0-t%C3%ACm-max-frac1x-frac1y/
ta thấy \(\left(x^2+\frac{1}{x^2}\right)\left(x^2-\frac{1}{x^2}\right)=\left(x^4-\frac{1}{x^4}\right)\)
\(\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}\right)=\left(x^4+\frac{1}{x^4}\right)+2\)
suy ra \(y=\frac{\left(x^4+\frac{1}{x^4}\right)+2}{\left(x^4-\frac{1}{x^4}\right)}\)
<=> \(y=z+\frac{2}{\left(x^4-\frac{1}{x^4}\right)}\)
<=>\(z=\frac{2}{\left(x^4-\frac{1}{x^4}\right)}-y\)
bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ
Phương trình đề bài cho tương đương:
\(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
\(\Rightarrow x+y+2=0\) (thừa số thứ 2 luôn > 0)
\(\Rightarrow x+y=-2\)
Ta có: \(\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\left(-2\right)^2\ge4xy\Rightarrow xy\le1\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\le-\frac{2}{1}=-2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=-2\end{cases}\Rightarrow x=y=-1}\)
Bạn ơi tại sao: \(\left(x+y+z\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
Vì \(\left(x+1\right)^2\ge0\)\(\forall x\)
\(\left(\frac{3}{4}-y\right)^2\ge0\)\(\forall y\)
\(\Rightarrow\left(x+1\right)^2+\left(\frac{3}{4}-y\right)^2\ge0\)\(\forall x,y\)
mà \(\left(x+1\right)^2+\left(\frac{3}{4}-y\right)^2=0\left(gt\right)\)
\(\Rightarrow\)Dấu " = " chỉ xảy ra khi : \(\left(x+1\right)^2=0\)và \(\left(\frac{3}{4}-y\right)^2=0\)
\(\Rightarrow x+1=0\)và \(\frac{3}{4}-y=0\)\(\Rightarrow x=-1\)và \(y=\frac{3}{4}\)
Vậy \(x=-1\)và \(y=\frac{3}{4}\)