x2 + 3x =0
x3 + 3x2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(\left(x+2\right)\left(2x-3\right)=x^2-4\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
2.\(x^2+3x+2=0\)
\(\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
3.\(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
4.\(x^3+x^2-12x=0\)
\(\Leftrightarrow x\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x\left(x+4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=3\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: =>(x+1)(x+2)=0
=>x=-1 hoặc x=-2
c: =>(2x+3)(x+1)=0
=>x=-1 hoặc x=-3/2
d: =>x(x+4)(x-3)=0
hay \(x\in\left\{0;-4;3\right\}\)
a: =>x^3(x-2)+10x(x-2)=0
=>(x-2)(x^3+10x)=0
=>x(x-2)(x^2+10)=0
=>x(x-2)=0
=>x=0 hoặc x=2
b: =>x^2*(x-3)-16(x-3)=0
=>(x-3)(x^2-16)=0
=>(x-3)(x+4)(x-4)=0
=>\(x\in\left\{3;4;-4\right\}\)
a: Ta có: \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)^3=-16\)
\(\Leftrightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)
\(\Leftrightarrow-10x^2-10x=0\)
\(\Leftrightarrow-10x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
c: Ta có: \(x^3+3x^2+3x+28=0\)
\(\Leftrightarrow\left(x+1\right)^3=-27\)
\(\Leftrightarrow x+1=-3\)
hay x=-4
Lời giải:
a.
PT $\Leftrightarrow 3x^2+\frac{x}{2}-3x^2+3x+2=0$
$\Leftrightarrow \frac{7}{2}x+2=0$
$\Leftrightarrow \frac{7}{2}x=-2$
$\Leftrightarrow x=-2: \frac{7}{2}=\frac{-4}{7}$
b.
PT $\Leftrightarrow 5x^2-3-5x^2-6x=0$
$\Leftrightarrow -3-6x=0$
$\Leftrightarrow 6x=-3$
$\Leftrightarrow x=\frac{-3}{6}=\frac{-1}{2}$
a.
\(\Leftrightarrow\left(x-1\right)^3=10^3\)
\(\Leftrightarrow x-1=10\)
\(\Rightarrow x=11\)
b.
\(\Leftrightarrow x^2-4x+4=25\)
\(\Leftrightarrow\left(x-2\right)^2=5^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
`a)3x^2-2x=5(3x-2)`
`<=>x(3x-2)=5(3x-2)`
`<=>(3x-2)(x-5)=0`
`<=>[(3x-2=0),(x-5=0):}`
`<=>[(x=2/3),(x=5)`
Vậy `S={2/3;5}.`
`b)(2x-6)^2-x^2=0`
`<=>(2x-6-x)(2x-6+x)=0`
`<=>(x-6)(3x-6)=0`
`<=>(x-6)(x-2)=0`
`<=>[(x=6),(x=2):}`
Vậy `S={6;2}`
a, \(3x^2-2x=5\left(3x-2\right)\Leftrightarrow x\left(3x-2\right)-5\left(3x-2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-2\right)=0\Leftrightarrow x=5;x=\dfrac{2}{3}\)
b, \(\left(2x-6\right)^2-x^2=0\Leftrightarrow\left(x-6\right)\left(3x-6\right)=0\Leftrightarrow x=2;x=6\)
\(x.\left(x+3\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy ...
\(x^2.\left(x+3\right)=0\)
\(=>\orbr{\begin{cases}x^2=0\\x+3=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy...