Tìm x biết
\(\frac{2}{3}.3^{x+1}-7.3^x=-405\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{3}.3^{x+1}-7.3^x=-405\)
\(\Rightarrow\dfrac{2}{3}.3^x.3^1-7.3^x=-405\)
\(\Rightarrow2.3^x-7.3^x=-405\)
\(\Rightarrow3^x.\left(2-7\right)=-405\)
\(\Rightarrow3^x.-5=-405\)
\(\Rightarrow3^x=\dfrac{-405}{-5}\)
\(\Rightarrow3^x=81\)
Vì \(3^4=81\) nên \(x=4\)
\(\dfrac{2}{3}.3^{x+1}-7.3^x=-405\)
\(\Leftrightarrow\dfrac{2}{3}.3.3^x-7.3^x=-405\)
\(\Leftrightarrow3^x\left(2-7\right)=-405\)
\(\Leftrightarrow3^x.\left(-5\right)=-405\)
\(\Leftrightarrow3^x=81\)
\(\Leftrightarrow3^x=3^4\)
\(\Leftrightarrow x=4\)
Vậy..
a) \(\frac{2}{3}.3^{x+1}-7.3^x=-405\)
=> \(\frac{2}{3}.3^x.3-7.3^x=-405\)
=> \(2.3^x-7.3^x=-405\)
=> \(3^x\left(2-7\right)=-405\)
=> \(3^x.\left(-5\right)=-405\)
=> \(3^x=-405:\left(-5\right)\)
=> \(3^x=81\)
=> \(x=4\)
b) \(\frac{3}{1-2x}=\frac{-5}{3x-2}\)
=> \(3\left(3x-2\right)=-5\left(1-2x\right)\)
=> \(9x-6=-5+10x\)
=> \(9x-10x=-5+6\)
=> \(-x=1\)
=> \(x=-1\)
a, đầu bài sai hay sao đó bn
b,\(\dfrac{2}{3}\).3x+1 - 7.3x = -405
3x(\(\dfrac{2}{3}\).3 - 7) = -405
3x . (-5) = -405
3x = 81 mà 81 = 34 suy ra x = 4
a)\(\left(x-2,5\right)^2=\frac{4}{9}\\ \left(x-\frac{5}{2}\right)^2=\left(\pm\frac{2}{3}\right)^2\\\Leftrightarrow\left\{{}\begin{matrix}x-\frac{5}{2}=\frac{2}{3}\\x-\frac{5}{2}=\frac{-2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{19}{6}\\x=\frac{11}{6}\end{matrix}\right. \)
vậy....
b)\(\left(2x+\frac{1}{3}\right)^3=\frac{-8}{27}\\ \left(2x+\frac{1}{3}\right)^3=\left(\frac{-2}{3}\right)^3\\ 2x+\frac{1}{3}=\frac{-2}{3}\\ x=\frac{-1}{2}\)
vậy...
a/ \(\frac{2}{3}.3^{x+1}-7.3^x=405\)
<=> 2.3x-7.3x=-405
<=> 5.3x=405
<=> 3x=81 = 34
=> x=4
b/ (0,4x-1,3)2=5,29=(2,3)2
=> \(\hept{\begin{cases}0,4x-1,3=2,3\\0,4x-1,3=-2,3\end{cases}}\)=> \(\hept{\begin{cases}x=9\\x=-\frac{5}{2}\end{cases}}\)
c/ 5.2x+1.2-2-2x=384
<=> 5.2x-1-2.2x-1=384
<=> 3.2x-1=384
<=> 2x-1=128=27
=> x-1=7 => x=8
d/ 3x+2.5y=45x
<=> 3x+2.5y=32x.5x
=> \(\hept{\begin{cases}x+2=2x\\x=y\end{cases}}\)=> x=y=2