chứng minh:(2n+5)^2-25 chia hết cho 4 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: (2n+5)2-25=(2n+5)2-52=(2n+5-5).(2n+5+5)=2n.(2n+10)=2.n.2.(n+5)
=4.n.(n+5) chia hết cho 4
=>(2n+5)2-25 chia hết cho 4

Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)

BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!

a: \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\cdot\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=2n\cdot2\left(n+3\right)=4n\left(n+3\right)\)
Vì n;n+3 có khoảng cách giữa hai số là 3 là số lẻ
nên n(n+3)⋮2
=>4n(n+3)⋮4*2=8
=>\(\left(2n+3\right)^2-9\) ⋮8
b: \(\left(4n+3\right)^2-25\)
\(=\left(4n+3+5\right)\left(4n+3-5\right)\)
=(4n+8)(4n-2)
\(=4\left(n+2\right)\cdot2\cdot\left(2n-1\right)=8\left(n+2\right)\left(2n-1\right)\) ⋮8

a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16
Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8
=>16n^2-8n+32n-16 chia hết cho 8
b)(2n+3)^2-9
=(2n+3-3)(2n+3+3)
=2n(2n+6)=4n^2+12n
Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4
Bạn vào câu hỏi tương tự nha !!! Tích mình nhé !
Bài 5:
a) Chứng minh (2n+5)2−25(2n+5)2−25 chia hết cho 44 với mọi n∈Z.n∈Z.
Ta có: (2n+5)2−25=4n2+20n+25−25=4n2+20n=4n(n+5).(2n+5)2−25=4n2+20n+25−25=4n2+20n=4n(n+5).
Vì 4⋮4⇒4n(n+5)⋮4∀n∈Z.
# Chúc bạn học tốt!