K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

xài mincopski thử, tui ăn cơm đã

7 tháng 6 2017

#: Lỡ hẹn với Mincopxki rồi xài cách khác vậy :(

Đặt \(a=\frac{2x}{3};b=\frac{2y}{3};c=\frac{2z}{3}\)

Khi đó ta có \(xy+yz+xz\ge3\) và cần chứng minh

\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\ge\frac{\sqrt{181}}{5}\)

Áp dụng BĐT Cauchy-Schwarz ta có:\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\)

\(=\frac{15}{\sqrt{181}}Σ_{cyc}\sqrt{\left(\frac{4}{9}+\frac{9}{25}\right)\left(\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}\right)}\ge\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\)

Giờ chỉ cần chứng minh \(\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\ge\frac{\sqrt{181}}{5}\)

\(\Leftrightarrow20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)\ge\frac{543}{5}\)

Đặt tiếp \(x+y+z=3u;xy+yz+xz=3v^2\left(v>0\right)\)

Vì thế \(u\ge v\ge1\)và áp dụng BĐT C-S dạng Engel ta có:

\(20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)-\frac{543}{5}\)

\(\ge20\left(x+y+z\right)+81\cdot\frac{\left(1+1+1\right)^2}{Σ_{cyc}\left(2x+3\right)}-\frac{543}{5}=60u+\frac{729}{6u+9}-\frac{543}{5}\)

\(=3\left(20u+\frac{81}{2u+3}-\frac{181}{5}\right)=\frac{6\left(u-1\right)\left(100u+69\right)}{5\left(2u+3\right)}\ge0\) 

Điều này đúng tức là ta có ĐPCM

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:
Áp dụng BĐT AM-GM:

\(a^3+1=(a+1)(a^2-a+1)\leq \left(\frac{a+1+a^2-a+1}{2}\right)^2=\left(\frac{a^2+2}{2}\right)^2\)

\(b^3+1\leq \left(\frac{b^2+2}{2}\right)^2\)

\(\Rightarrow \sqrt{(a^3+1)(b^3+1)}\leq \frac{(a^2+2)(b^2+2)}{4}\)

\(\Rightarrow \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}\geq \frac{4a^2}{(a^2+2)(b^2+2)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\geq \underbrace{\frac{4a^2}{(a^2+2)(b^2+2)}+\frac{4b^2}{(b^2+2)(c^2+2)}+\frac{4c^2}{(c^2+2)(a^2+2)}}_{M}\)

Ta cần CM \(M\geq \frac{4}{3}\)

\(\Leftrightarrow \frac{a^2(c^2+2)+b^2(a^2+2)+c^2(b^2+2)}{(a^2+2)(b^2+2)(c^2+2)}\geq \frac{1}{3}\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (a^2+2)(b^2+2)(c^2+2)\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (abc)^2+2(a^2b^2+b^2c^2+c^2a^2)+4(a^2+b^2+c^2)+8\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2(a^2+b^2+c^2)\geq 72\)

Điều này luôn đúng do theo BĐT AM-GM thì: \(\left\{\begin{matrix} a^2b^2+b^2c^2+c^2a^2\geq 3\sqrt[3]{(abc)^4}=3\sqrt[3]{8^4}=48\\ 2(a^2+b^2+c^2)\geq 6\sqrt[3]{(abc)^2}=6\sqrt[3]{8^2}=24\end{matrix}\right.\)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=2$

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Y
23 tháng 5 2019

https://hoc24.vn/hoi-dap/question/620649.html

NV
23 tháng 5 2019

Kết hợp Mincôpxki và C-S:

\(VT\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{a+c}\right)^2+\left(a+b+c\right)^2}\)

\(VT\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}=\sqrt{\frac{405}{4\left(a+b+c\right)^2}+\frac{81}{\left(a+b+c\right)^2}+\left(a+b+c\right)^2}\)

\(VT\ge\sqrt{\frac{405}{12\left(a^2+b^2+c^2\right)}+2\sqrt{\frac{81\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}}=\sqrt{\frac{405}{12.3}+18}=\frac{3\sqrt{13}}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 6 2016

3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)

vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)

tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)

tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)

cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)

giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)

<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)

<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)

<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)

(đúng với mọi a,b,c >0) (2)

(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z