cho A=4 mũ 0+4 mũ 1+4 mũ 2+4 mũ 3+........+4 mũ 97.Chứng tỏ rằng A chia hết cho 85
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)
\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
Ta có:
A = 4 + 42 + 43 + 44 + ... + 499 + 4100
A = (4 + 42) + (43 + 44) + ... + (499 + 4100)
A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)
A = 4.5 + 43.5 + ... + 499.5
A = 5.(4 + 43 + ... + 499)
Vậy A chia hết cho 5
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
Ta có: 3^0 + 3^1 + 3^2 + 3^3 + ... + 3^11
= ( 3^0 + 3^1 + 3^2 + 3^3 ) + ... + ( 3^8 + 3^9 + 3^10 + 3^11 )
= 40 + ... + 3^8 . ( 3^0 + 3^1 + 3^2 + 3^3 )
= 40 + ... + 3^8 . 40
= 40 . ( 1 + ... + 3^8 ) \(⋮\)40
~ Chúc bạn học giỏi! ~
\(1+3+3^2+............+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=1.40+3^4.40+3^8.40\)
\(=40\left(1+3^4+3^8\right)⋮40\left(đpcm\right)\)
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6