Tính tổng:
a,2+22+23+...+250
b,1+3+32+...+310
gấp gấp tối nay mik đi học rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 1 + 3 + 32 + 33 + ... + 32000
3.A = 3 + 32 + 33+ 33+... + 32001
3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)
2A = 3 + 32 + 33 + ... + 32001 - 1 - 3 - 32 - 33 - ... - 32000
2A = 32001 - 1
A = \(\dfrac{3^{2001}-1}{2}\)
Bài 1 :
a) \(...=5^5:5^4=5\)
b) \(...=7^8:7^9=\dfrac{1}{7}\)
c) \(...=2^{15}:\left(2^6.2^5\right)=2^{15}:2^{11}=2^4=16\)
d) \(...=3^{28}:3^{26}=3^2=9\)
Bài 2 :
a) \(...=3^2.3^3:3^4=3^5:3^4=3\)
b) \(...=10^9-10^9=0\)
c) \(...=5^{10}.5^{30}:5^{12}=5^{40}:5^{12}=5^{28}\)
a) \(...=2^{14}:\left(2^6.2^5\right)=2^{14}:2^{11}=2^3=8\)
b) \(...=5^{25}.5^2:5^{24}=5^{27}:5^{24}=5^3=125\)
c) \(...=2^{22}:2^2-2^{20}=2^{20}-2^{20}=0\)
d) \(...=3^6:3^3=3^3=27\)
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
a, 7x + 10x = 5x
17x = 5x
17x - 5x = 0
12x = 0
x =0
2;
a, 4x + 7x = 22
11x = 22
x = 2
b, 12x - 8x = 25
4x = 25
x = \(\dfrac{25}{4}\)
c, \(\dfrac{1}{2}\)x - \(\dfrac{1}{3}\)x = \(\dfrac{4}{5}\)
(\(\dfrac{1}{2}-\dfrac{1}{3}\))x = \(\dfrac{4}{5}\)
\(\dfrac{1}{6}\)x = \(\dfrac{4}{5}\)
x = \(\dfrac{4}{5}\) : \(\dfrac{1}{6}\)
x = \(\dfrac{24}{5}\)
\(A=2+2^2+..+2^{50}\)
\(2A=2^2+2^3+..+2^{51}\)
\(2A-A=2^2+2^3+..+2^{51}-\left(2+2^2+..+2^{50}\right)\)
\(A=2^{51}-2\)
BẤM MÁY TÍNH RA KẾT QUẢ GIÚP MÌNH NHA BẠN
\(B=1+3+3^2+...+3^{10}\)
\(3B=3+3^2+3^3+...+3^{10}\)
\(3B-B=3+3^2+3^3+...+3^{11}-\left(1+3+3^2+...+3^{10}\right)\)
\(2B=3^{11}-1\)
\(B=\dfrac{3^{11}-1}{2}\)