So sánh:
a.127^123 và 513^18
b.31^11 và 17^14
c.63^7 và 16^12
d.107^50 và 73^75
e. 11^1979 và 37^1320
f. 3^24680 và 2^37020
Nhờ các anh chị giúp em với ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{#040911}\)
\(a,\)
\(202^{303}\text{ và }303^{202}\)
Ta có:
\(202^{303}=\left(202^3\right)^{101}=\left(101^3\cdot2^3\right)^{101}=\left(101^3\cdot8\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}=\left(101^2\cdot3^2\right)^{101}=\left(101^2\cdot9\right)^{101}\)
Ta có:
\(8\cdot101^3=8\cdot101\cdot101^2=808\cdot101^2\)
Vì \(808>9\)
\(\Rightarrow808\cdot101^2>9\cdot101^2\)
\(\Rightarrow202^{303}>303^{202}\)
\(b,\)
Ta có:
\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\\ 37^{1320}=\left(37^2\right)^{660}=1369^{660}\\ \text{Vì }1331< 1369\\ \Rightarrow1331^{660}< 1369^{660}\\ \Rightarrow11^{1979}< 37^{1320}\)
ôi tr tường tẩn đầy đủ ko thiếu cái j trả lời từ đầu đến cuối nha bạn giúp mk ik
cả mn nữa, mk cảm ơn trước nhé!!!!!
1) \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1313^{660}\)
\(37^{1320}=\left(37^2\right)^{660}=1369^{660}\)
\(1313^{660}< 1369^{660}\Rightarrow11^{1979}< 37^{1320}\)
Các câu khác tương tự
a)2^31=2.2^30=2.8^10
3^21=3.3^20=3.9^10
Vì 2.8^10<3.^10
\(\Rightarrow\)28^10<3.9^10\(\Rightarrow\)2^31<3^21
b)3^39=3^\(^{13x3}\)=159323^3
11^21=11\(^{7x3}\)=19487171^3
Vì 159323^3<19487171^3\(\Rightarrow\)3^39<11^21
c)11^1979<37^1320=(11^3)^660=1331^660
37^1320=(37^2)^660\(\Rightarrow\)11^1979<37^1320
a) Ta có : 3111 < 3211 = (25)11 = 255
1714>1614 = (24)14=256
=> 3111 <255<256<1714
=>3111<1714
b)Ta có : 1617 = (24)17 = 268
822 = (23)22 = 266
Vì 268>266 nên 1617 >822
c) Ta có : 10750 <10850= (4.27)50 = 450 .2750 = 2100 . 3150
7375 >7275 = (8.9)75 = 875 . 975 = 2225 . 3150
=> 10750 <2100 .3150 <2225.3150<7375
=> 10750 <7375
d) Ta có : 291 >290 = (25)18 = 3218
535<536 = (52)18 = 2518
Vì 3218 >2518 nên 291 > 535.
e) Ta có : \(\left(\frac{1}{32}\right)^7=\frac{1}{32^7}=\frac{1}{2^{35}}\)
\(\left(\frac{1}{16}\right)^9=\frac{1}{16^9}=\frac{1}{2^{36}}\)
Vì \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\) nên \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)