bài 1: 5a=8b=2c và a-b-c=3
chứng minh rằng [(a-b)^2-(3)^3]chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a/ 5a + 8b = 6a - a + 6b + 2b = 6(a+b) + ( - a + 2b) chia hết cho 3 mà 6(a + b) chia hết cho 3 => - a + 2b chia hết cho 3
b/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b = 10a + b + 15b chia hết cho 3 mà 15b chia hết cho 3 => 10a + b chia hết cho 3
c/ 5a + 8b chia hết cho 3 => 2(5a + 8b) = 10a + 16b =9a + a + 16b chia hết cho 3 mà 9a chia hết cho 3 => 16b + a chia hết cho 3
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^3+x+2}\ge\dfrac{-x^2+3}{8}\) với \(x>0\)
Thật vậy, BĐT tương đương:
\(\left(x^2-3\right)\left(x^3+x+2\right)+8\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3+2x^2+x+2\right)\ge0\) (luôn đúng)
Áp dụng:
\(\Rightarrow VT\ge\dfrac{-a^2+3}{8}+\dfrac{-b^2+3}{8}+\dfrac{-c^2+3}{8}=\dfrac{9-\left(a^2+b^2+c^2\right)}{8}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
5a + 8b ⋮ 3
6a - a + 6b + 2b ⋮ 3
(6a + 6b) + (-a + 2b) ⋮ 3
6(a + b) + (-a + 2b) ⋮ 3
6(a + b)⋮ 3
⇒ - a + 2b ⋮ 3 (tính chất chia hết của một tổng)
b; 5a + 8b ⋮ 3
2.(5a + 8b) ⋮ 3
10a + 16b ⋮ 3
10a + b + 15b ⋮ 3
15b ⋮ 3
⇒ 10a + b ⋮ 3 (tính chất chia hết của một tổng)
+) 5a + 3b chia hết cho 2012 => 8(5a + 3b) chia hết cho 2012 => 40a + 24b chia hết cho 2012
13a + 8b chia hết cho 2012 => 3(13a + 8b) chia hết cho 2012 => 39a + 24b chia hết cho 2012
=> 40a + 24b - (39a + 24b) chia hết cho 2012 => a chia hết cho 2012
+) 5a + 3b chia hết cho 2012 => 13(5a + 3b) chia hết cho 2012 => 65a + 39b chia hết cho 2012
13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012 => 65a + 40b chia hết cho 2012
=> 65a + 40b - (65a + 39b) chia hết cho 2012 => b chia hết cho 2012
Vậy ...
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
Bài này Linh làm được nì
Ta có: 5a = 8b = 20c
mà BCNN(5,8,20) = 23 . 5 = 40
nên \(\frac{5a}{40}=\frac{8b}{40}=\frac{20c}{40}\)
\(=>\frac{a}{8}=\frac{b}{5}=\frac{c}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{5}=\frac{c}{2}=\frac{a-b-c}{8-5-2}=\frac{3}{1}=3\)
\(=>a=3\cdot8=24\)
\(b=3\cdot5=15\)
\(c=3\cdot2=6\)
Thay vào biểu thức, ta có: \(\left[\left(a-b\right)^2-c^3\right]\)\(=\left[\left(24-15\right)^2-6^3\right]\)
\(=-135⋮45\)
Vậy\(\left[\left(a-b\right)^2-c^3\right]⋮45\) khi a=24 ; b=15 ; c= 6