Viết các đa thức sau thành tích:
a)x^3+8y^3
b)a^6+b^3
c)8y^3-125
Có cách giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D) 64x^3-1/8y^3
= (4x)^3 + (1/2y)^3
= ( 4x + 1/2y ) [ (4x)^2 - 4x.1/2y + (1/2y)^2 ]
E) 125x^6-27y^9
( câu này mik chưa rõ nên vx chưa tek giải cho bn )
HOk tốt nhé
a
\(8x^3-\dfrac{1}{125}y^3\\ =\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\\ =\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\\ =\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)\)
b
\(-x^3+6x^2y-12xy^2+8y^3\\ =-\left(x^3-6x^2y+12xy^2-8y^3\right)\\ =-\left(x^3-3.2y.x^2+3.\left(2y\right)^2.x-\left(2y\right)^3\right)\\ =-\left(x-2y\right)^3\\ =-\left(x-2y\right)\left(x-2y\right)\left(x-2y\right)\)
a: 8x^3-1/125y^3
=(2x)^3-(1/5y)^3
=(2x-1/5y)(4x^2+2/5xy+1/25y^2)
b: =(2y-x)^3
a) \(x^3+8y^3=x^3+\left(2y\right)^3=\left(2y+x\right)\left(4y^2-2xy+x^2\right)\)
b) \(a^6-b^3=\left(a^2\right)^3-b^3=\left(a^2-b\right)\left(b^2+a^2b+a^4\right)\)
c) \(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
d) \(8x^3+27=\left(2x\right)^3+3^3=\left(2x+3\right)\left(4x^2-6x+9\right)\)
a) x3+8y3x3+8y3
=(x+2y)(x2−2xy+4y2)
b) a6−b3
=(a2)3-b3
=(a2-b) (a4+a2b+b2)
c) 8y3−125
=(2y−5)(4y2+10y+25)
d) 8x3+27
=(2x+3)(4x2−6x+9)
hok tốt!!!
\(x^3+27y^3=x^3+\left(3y\right)^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)
\(a^6-8b^3=\left(a^2\right)^3-\left(2b\right)^3=\left(a^2-2b\right)\left(a^4+2a^2b+4b^2\right)\)
\(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(8z^3+x^3=\left(2z\right)^3+x^3=\left(2z+x\right)\left(4z^2-2xz+x^2\right)\)
\(a,3a+3b-a^2-ab\)
\(=\left(3a-a^2\right)+\left(3b-ab\right)\)
\(=a\left(3-a\right)+b\left(3-a\right)\)
\(=\left(a+b\right)\left(3-a\right)\)
\(b,8y^2-8yz-13y+13z\)
\(=\left(8y^2-8yz\right)-\left(13y-13z\right)\)
\(=8y\left(y-z\right)-13\left(y-z\right)\)
\(=\left(y-z\right)\left(8y-13\right)\)
\(c,3b^2+3c^2-ab^2-ac^2+2a-6\)
\(=\left(3b^2-ab^2\right)+\left(3c^2-ac^2\right)+\left(2a-6\right)\)
\(=b^2\left(3-a\right)+c^2\left(3-a\right)-2\left(3-a\right)\)
\(=\left(3-a\right)\left(b^2+c^2-2\right)\)
a) \(8x^3-27y^6\)
\(=\left(2x\right)^3-\left(3y^2\right)^3\)
\(=\left(2x-3y^2\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)
\(=\left(2x-3y^2\right)\left(4x^2+6xy+9y^2\right)\)
b) \(a^3b^3c^3-1\)
\(=\left(abc\right)^3-1^3\)
\(=\left(abc-1\right)\left(a^2b^2c^2+abc+1\right)\)
c) \(64x^3+\dfrac{1}{8}y^3\)
\(=\left(4x\right)^3+\left(\dfrac{1}{2}y\right)^3\)
\(=\left(4x+\dfrac{1}{2}y\right)\left[\left(4x\right)^2+4x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)
\(=\left(4x+\dfrac{1}{2}y\right)\left(4x^2+2xy+\dfrac{1}{4}y^2\right)\)
d) \(125+y^3\)
\(=5^3+y^3\)
\(=\left(5+y\right)\left(25-5y+y^2\right)\)
e) \(a^6-b^6\)
\(=\left(a^3\right)^2-\left(b^3\right)^2\)
\(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
f) \(4x^2-9\left(3x+5\right)^2\)
\(=\left(2x\right)^2-\left[3\left(3x+5\right)\right]^2\)
\(=\left[2x-3\left(3x+5\right)\right]\left[2x+3\left(3x+5\right)\right]\)
\(=\left(2x-9x-15\right)\left(2x+9x+15\right)\)
\(=\left(-7x-15\right)\left(11x+15\right)\)
a) 9x4+16y6-24x2y3
=(3x2)2-2.3x2.4y3+(4y3)2
=(3x2-4y3)2
b) 16x2-24xy+9y2
=(4x)2-2.4x.3y+(3y)2
=(4x-3y)2
c) 36x2-(3x-2)2
=(36x-3x+2)(36x+3x-2)
=(33x+2)(39x-2)
d) 27x3+54x2y+36xy2+8y3
=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3
=(3x+2y)3
e) y9-9x2y6+27x4y3-27x6
=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3
=(y3-3x2)3
f) 64x3+1
= (4x)3+13
=(4x+1)[(4x)2-4x.1+12]
=(4x+1)(16x2-4x+1)
e) 27x6-8x3 *sửa đề*
=(3x2)3-(2x)3
=(3x2-2x)[(3x)2+3x2.2x+(2x)2]
=(3x2-2x)(9x2+6x3+4x2)
~~~
a) \(x^2-xy+x-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+2xy-4x-8y\)
\(=x\left(x+2y\right)-4\left(x+2y\right)\)
\(\left(x-4\right)\left(x+2y\right)\)
c) \(x^3-x^2-x+1\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
\(a,x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(b,a^6-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(c,8y^3-125=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(d,8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
\(a)x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(b)a^6-b^3=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(c)8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(d)8z^3+27=\left(2z\right)^3+3^3=\left(2x+3\right)\left(4z^2-6z+9\right)\)
\(x^3+8y^3\)
\(=x^3+\left(2y\right)^3\)
\(=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(8y^3-125\)
\(=\left(2y\right)^3-5^3\)
\(=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(a^6-b^3\)
\(=\left(a^2\right)^3-b^3\)
\(=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(8x^3-\frac{1}{8}\)
\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)
\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
\(x^{32}-1\)
\(=\left(x^{16}\right)^2-1^2\)
\(=\left(x^{16}-1\right)\left(x^{16}+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
a) \(x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
c) \(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
a) x^3 + 8y^3 = (x + 8y)(x^2 - 8xy + (8y)^2) = (x + 8y)(x^2 - 8xy + 64y^2)
b) a^6 + b^3 = (a^2)^3 + b^3 = (a^2 + b)((a^2)^2 - a^2b + b^2) = (a^2 + b)(a^4 - a^2b + b^2)
c) 8y^3 - 125 = 8y^3 - 5^3 = (8y - 5)((8y)^2 + 8y x 5 + 5^2) = (8y - 5)(64y^2 + 40y + 25)
cố lên nha