chứng minh 859 +2140+469chia hết cho 4099
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2140.2141}\)
Có \(\frac{1}{2^3}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};...;\frac{1}{2140^3}< \frac{1}{2140.2141}\)
\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\). Từ đó ta tính được A
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2140}-\frac{1}{2141}\)
\(A=\frac{1}{2}-\frac{1}{2141}\Rightarrow A>\frac{1}{2}\). Mà \(\frac{1}{2}< \frac{2}{3}\Rightarrow A< \frac{2}{3}\)
Có \(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\Rightarrow\)\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< \frac{2}{3}\)
1)
a)Ta có:
S=1+2+22+.....+299
S=(1+2)+(22+23)+...+(298+299)
S=3+2(1+2)+...+298(1+2)
S=3+2.3+...+298.3
S=3(1+2+...+298)\(⋮\)3
Vậy S\(⋮\)3
b)Ta có:
S=1+2+22+.....+299
2S=2+22+23+...+2100
2S-S=(2+22+23+...+2100)-(1+2+22+.....+299)
S=2+22+23+...+2100-1-2-22-.....-299
S=2100-1
S+1=2100-1+1
S+1=2100
S+1=(22)50
S+1=450=4n+2
=>n+2=50
=>n=48
Vậy n=48
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
Trả lời :
\(\left(8^{2017}:8^{2015}\right).\left(8^{2140}:8\right)\)
\(=8^2.8^{2139}\)
\(=8^{2141}\)
Học tốt
\(\left(8^{2017}:8^{2015}\right)\cdot\left(8^{2140}:8\right)\)
\(=8^2\cdot8^{2139}\)
\(=8^{2141}\)
\(8^{59}+2^{140}+4^{69}=2^{59\cdot3}+2^{140}+2^{69\cdot2}=2^{177}+2^{140}+2^{138}=2^{138}\left(2^{39}+2^2+1\right)⋮4099\)