K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

cm gì vạy bạn ?

2 tháng 12 2018

\(A=4a\left(a+b\right)\left(a+b+c\right)\left(a+c\right)+b^2c^2\)

\(=4\left[a\left(a+b+c\right)\right]\left[\left(a+b\right)\left(a+c\right)\right]+b^2c^2\)

\(=4\left[a^2+ab+ac\right]\left[a^2+ac+ab+bc\right]+b^2c^2\)

Đặt \(a^2+ab+ac=t\)

Khi đó: 

\(A=4t\left[t+bc\right]+b^2c^2\)

\(=4t^2+4tbc+b^2c^2\)

\(=\left(2t+bc\right)^2=\left(2a^2+2ab+2ac+bc\right)^2\ge0\forall a;b;c\)

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

21 tháng 6 2016

bài 1:

\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)

\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)

Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm

\(\Leftrightarrow\frac{1}{3}-x< 0\)

\(\Leftrightarrow x>\frac{1}{3}\)

Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương

bài 2:

a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0

+)Nếu x2-2<0

=>x2<2

=>x<\(\sqrt{2}\)

+)Nếu 5x<0

=>x<0

Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm

b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm

=>x-2<0 hoặc x-6<0

+)Nếu x-2<0

=>x<2

+)Nếu x-6<0

=>x<6

Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

17 tháng 9 2021

a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)

b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)

c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)

 

16 tháng 7 2021

mng giúp e với ặk

12 tháng 3 2023

\(x^2-\left(2a-1\right)x-4a-3=0\)

\(\Delta=\left(2a-1\right)^2+4\left(4a+3\right)\)

\(=4a^2-4a+1+16a+12\)

\(=4a^2+12a+13=\left(2a+3\right)^2+4>0\)

Vì \(\Delta>0\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi a

Vì phương trình có 2 nghiệm phân biệt, áp dụng hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2a-1\\x_1.x_2=-4a-3\end{matrix}\right.\) ⇒ \(x_1.x_2+2\left(x_1+x_2\right)=-5\)

Ta có:

\(A=x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=\left(2a-1\right)^2-2\left(-4a-3\right)\)

\(=4a^2-4a+1+8a+6\)

\(=\left(2a+1\right)^2+6\)

Vì \(\left(2a+1\right)^2\ge0\forall a\)

\(A\ge6\)

Min A=6 <=> \(a=-\dfrac{1}{2}\)

25 tháng 10 2017

Ta có:

* a2 + 2a + 1 = (a+ 1)2

* a 2 + a + 1 = a 2 + 2 . 1 2 a + 1 4 + 3 4 = a + 1 2 2 + 3 4 > 0 ∀ a

* a2 – 2a + 1 = (a- 1)2

Do đó, chỉ có biểu thức a2 + 2a – 1  có thể nhận giá trị âm .