so sánh A=2003.2005 và B=2004^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A = 2003.2005 = 2003.2004 + 2003
B = 20042 = 2004.2003 + 2004
=> A < B
2) A = 123456787.123456789 = 123456787.123456788 + 123456787
B = 1234567882 = 123456788.123456787 + 123456788
=> A < B
\(a,2003\cdot2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2\)
\(b,7^{16}-1\\ =\left(7^8-1\right)\left(7^8+1\right)=\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\\ =\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\\ =\left(7-1\right)\left(7+1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\\ =48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)>8\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\)
a. Dựa vào tính chất thừa và thiếu, suy ra: 2003 . 2005 = 20042
A = \(\frac{2004-2003}{2004+2003}\)và B = \(\frac{2004^2-2003^2}{2004^2+2003^2}\)
Ta đặt : 2004 = x
2003 = y
Theo tính chất cơ bản của phân thức , ta có :
\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+y^2+2xy}\) ( 1 )
Vì x > 0 , y > 0 nên x2 + y2 + 2xy > x2 + y2
\(\Rightarrow\frac{x^2-y^2}{x^2+y^2+2xy}< \frac{x^2-y^2}{x^2+y^2}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Vậy A < B
https://h.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+2+ph%C3%A2n+s%E1%BB%91++A=+2004%5E2003++1+/+2004%5E2004++1++B=2004%5E2002+1/2004%5E2003++1&id=238505
Ta có : \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
Nên : \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
A = 2004 x 15 + 2004 x 6 - 2004
A = 2004 x ( 15+6-1 )
A = 2004 x 20
Vì 2004 x 20 < 20 x 2005 nên A < b.
Có : 2004A = 2004^2004+2004/2004^2004+1 = 1 + 2003/2004^2004+1
2004B = 2004^2005+2004/2004^2005+1 = 1 + 2003/2004^2005+1 < 1 + 2003/2004^2004+1 = 2014A
=> A > B
Tk mk nha
Ta có \(A=2003.2005=2003.\left(2004+1\right)=2003.2004+2003\)
\(B=2004^2=2004.2004=2004.\left(2003+1\right)=2003.2004+2004\)
Vì 2003<2004 nên 2003.2004+2003<2003.2004+2004
Vậy A<B
\(A=2003.2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~