Tìm GTLN của M =x\(^{^2}\)+ 17/x\(^2\)+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2+17}{x^2+7}\)
\(\Leftrightarrow Bx^2+7B=x^2+17\)
\(\Leftrightarrow Bx^2+7B-x^2-17=0\)
\(\Leftrightarrow x^2\left(B-1\right)+7B-17=0\)
Để pt có nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow0^2-\left(B-1\right)\left(7B-17\right)\ge0\)
\(\Leftrightarrow7B^2-24B+17\le0\)
\(\Leftrightarrow1\le B\le\frac{17}{7}\)
Vậy \(max_B=\frac{17}{7}\Leftrightarrow x=0\)
Phuongdeptrai274:e có cách khác a thử check nha!
\(B=\frac{x^2+17}{x^2+7}\)
\(B=\frac{x^2+7+10}{x^2+7}\)
\(B=1+\frac{10}{x^2+7}\)
\(\Rightarrow B\le1+\frac{10}{0+7}=\frac{17}{7}\)
Dấu "=" xảy ra khi x=0
\(B=\frac{x^2+17}{x^2+7}=\frac{x^2+7}{x^2+7}+\frac{10}{x^2+7}=1+\frac{10}{x^2+7}\)
để B đạt gtln thì 1/x^2 + 7 lớn nhất
=> x^2 + 7 nhỏ nhất
mà x^2 + 7 > 7
=> x^2 + 7 = 7
=> x^2 = 0
=> x = 0
tự thay vào tìm gtln
Ta thấy x^2 >= 0 => x^2 + 17 >= 17 ; x^2 + 7 >= 7
=> x^2 + 17/x^2 + 7 >= 17/7
Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0
Vậy với x = 0 ta có GTNN của B là 17/7
Bạn sửa lại đề thành Tìm GTNN nhé
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
2:
a: =-(x^2-12x-20)
=-(x^2-12x+36-56)
=-(x-6)^2+56<=56
Dấu = xảy ra khi x=6
b: =-(x^2+6x-7)
=-(x^2+6x+9-16)
=-(x+3)^2+16<=16
Dấu = xảy ra khi x=-3
c: =-(x^2-x-1)
=-(x^2-x+1/4-5/4)
=-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2
1)
a) \(A=x^2+4x+17\)
\(A=x^2+4x+4+13\)
\(A=\left(x+2\right)^2+13\)
Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)
Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)
Vậy: \(A_{min}=13\) khi \(x=-2\)
b) \(B=x^2-8x+100\)
\(B=x^2-8x+16+84\)
\(B=\left(x-4\right)^2+84\)
Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)
Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)
Vậy: \(B_{min}=84\) khi \(x=4\)
c) \(C=x^2+x+5\)
\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)
1:
a: A=x^2+4x+4+13
=(x+2)^2+13>=13
Dấu = xảy ra khi x=-2
b; =x^2-8x+16+84
=(x-4)^2+84>=84
Dấu = xảy ra khi x=4
c: =x^2+x+1/4+19/4
=(x+1/2)^2+19/4>=19/4
Dấu = xảy ra khi x=-1/2
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(g\left(x\right)=-\left(9x^2+42x+49\right)+6x+14-17\)
\(g\left(x\right)=-9x^2-42x-49+6x+14-17\)
\(g\left(x\right)=-9x^2-36x-52=-\left(9x^2+36x+36\right)-16\)
\(g\left(x\right)=-\left(3x+6\right)^2-16\)
ta có : \(\left(3x+6\right)\ge0\) với mọi giá trị của \(x\)
\(\Rightarrow-\left(3x+6\right)\le0\) với mọi giá trị của \(x\)
\(\Leftrightarrow-\left(3x+6\right)-16\le-16< 0\) với mọi giá trị của \(x\) (đpcm)
b) ta có : \(g\left(x\right)=-\left(3x+6\right)^2-16\le-16\) với mọi giá trị của \(x\) (chứng minh trên)
\(\Rightarrow\) GTLN của \(g\left(x\right)\) là \(-16\) khi \(-\left(3x+6\right)^2=0\Leftrightarrow3x+6=0\Leftrightarrow3x=-6\Leftrightarrow x=\dfrac{-6}{3}=-2\)
vậy GTLN của \(g\left(x\right)\) là \(-16\) khi \(x=-2\)
a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right).1+1+16\right]\)
\(=-\left(3x+7-1\right)^2-16\)
\(=-\left(3x+6\right)^2-16\)
Ta có: \(-\left(3x+6\right)^2\le0\forall x\Rightarrow-\left(3x+6\right)^2-16< 0\forall x\)
\(\Rightarrow\) đpcm
b) Dấu "=" xảy ra khi 3x + 6 = 0 hay x = -2
Vậy GTLN của g(x) là -16 khi x =-2.
a: \(g\left(x\right)=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+17\right]\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+1+16\right]\)
\(=-\left(3x-6\right)^2-16< 0\)
b: \(g\left(x\right)=-\left(3x-6\right)^2-16\le-16\)
Dấu '=' xảy ra khi x=2