Bài 1: Tìm \(x\inℚ\), biết:
a) \(\left(x+1\right)\left(x-2\right)< 0\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
mấy men CTV ơi giúp mị với, mị cần gấp,
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
a, A = (x-1)(x+6) (x+2)(x+3)
= (x^2 + 5x -6 ) (x^2 + 5x + 6)
Đặt t = x^2 +5x
A= (t-6)(t+6)
= t^2 - 36
GTNN của A là -36 khi và ck t= 0
<=> x^2 +5x = 0
<=> x=0 hoặc x=-5
Vậy...
Ta có: \(D=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2\)
\(=4x^2\)
a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Để dấu "=" xảy ra thì x = 0 , y = 1/10
b/ Tương tự.
a: \(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
=>\(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(-\dfrac{3}{2}x-\dfrac{1}{2}x=\dfrac{1}{2}-\dfrac{1}{4}\)
=>\(-2x=\dfrac{1}{4}\)
=>\(2x=-\dfrac{1}{4}\)
=>\(x=-\dfrac{1}{4}:2=-\dfrac{1}{8}\)
b: ĐKXĐ: x>=0
\(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
=>\(\left\{{}\begin{matrix}6-3\sqrt{x}=0\\\left|x\right|-7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\sqrt{x}=6\\\left|x\right|=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-7\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
\(a,1-3\left|2x-3\right|=-\dfrac{1}{2}\\ 3\left|2x-3\right|=1+\dfrac{1}{2}\\ 3\left|2x-3\right|=\dfrac{3}{2}\\ \left|2x-3\right|=\dfrac{3}{2}:3\\ \left|2x-3\right|=\dfrac{9}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-3=\dfrac{9}{2}\\2x-3=-\dfrac{9}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{15}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy `x in {15/4;-3/4}`
\(b,\left(\left|x\right|-0,2\right)\left(x^3-8\right)=0\\ \left(\left|x\right|-0,2\right)\left(x-2\right)\left(x^2+2x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|-0,2=0\\x-2=0\\x^2+2x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|=0,2\\x=2\\\left(x+1\right)^2+3=0\left(lọai\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0,2\\x=-0,2\\x=2\end{matrix}\right.\)
Vậy `x in {+-0,2;2}`
a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0
TH2 3x-4=0 <=>x=4/3
KL:.....
b) (x+3)(x−1)+2x(x+3)=0.
<=> (x+3)(x-1+2x)=0
TH1: x+3=0 <=> x=-3
TH2 x-1=0 <=> x=1
KL:.....
c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 \)
KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)
KL:....
a) \(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(9x^2+6x+1=0\)
\(\Leftrightarrow\left(3x+1\right)^2=0\)
\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)
d) \(x^2-4x=4\)
\(\Leftrightarrow\left(x-2\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)
\(a)\)\(\left(x+1\right)\left(x-2\right)< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2}\)
Vậy \(-1< x< 2\)
\(b)\)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
TH1 : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Leftrightarrow x>2}\)
TH2 : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Leftrightarrow x< \frac{-2}{3}}\)
Vậy \(x>2\) hoặc \(x< \frac{-2}{3}\)
Chúc bạn học tốt ~