K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

3A = 3( 398-397+396-395+...+32-3+1)

3A = 399-398+397-396+...+33-32+3

3A + A = (399-398+397-396+...+33-32+3) + (398-397+396-395+...+32-3+1)

4A = 399+1

A = 399+1 / 4

Mình viết chữ hơi nhỏ (Không biết chỉnh). Bạn thông cảm nha!

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)

12 tháng 3 2021
400×399÷2=79800
7 tháng 9 2017

A = 1 + 3 + 5 + 7 + .......... + 397 + 399

A có số số hạng là:

( 399 - 1 ) : 2 + 1 = 200 ( số hạng )

A có kết quả là:

( 399 + 1 ) x 200 : 2 = 40000

B = 2 + 4 + 6 + 8 + .......... + 396 + 398

B có số số hạng là:

( 398 - 2 ) : 2 + 1 = 199 ( số hạng )

B có kết quả là:

( 398 + 2 ) x 199 : 2 = 39800

Vì 40000 > 39800 nên A > B

7 tháng 9 2017

tks : D tớ cx đang định làm  như thế : D
 

21 tháng 1 2018

là đã bị mờ

21 tháng 1 2018

Faded  = > Bị mờ 

Kết quả hình ảnh cho hinh bố thí cái

21 tháng 9 2021

38/5=7/3/5      

107/12=8/11/12

95/21=4/11/21

215/32=6/23/32

chữ đầu là số nguyên k cho mình nha

19 tháng 6 2017

\(1+1=2\)

          Tk mình mình tk lại

19 tháng 6 2017

2 k mk nha

5 tháng 2 2017

C . 3 phần 4

5 tháng 2 2017

chả có đáp án nào cả

a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)

\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)

\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)

\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)