CMR Nếu a+b/b+c=c+d/d+a(c+d khác 0)thì a=c hoặc a+b+c+d=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2bd=c\left(b+d\right)\)
\(\Rightarrow\left(a+c\right).d=bc+cd\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có:2bd=c(b+d)
=>2bd=bc+cd
Mà a+c=2b (theo đề)
=>(a+c).d=bc+cd
=>ad+cd=bc+cd
=>ad=bc (cùng bớt đi cd)
=>a/b=c/d (đpcm)
Đặt a +c vào 2bd ta có
(a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ad = cb
=> \(\frac{a}{b}=\frac{c}{d}\)
Đặt a +c vào 2bd ta có
(a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ad = cb
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
từ a+b/b+c=c+d/d+a=>ad+a^2+bd+ab=bc+bd+c^2+cd
=>ad+ab+a^2-bc-cd-c^2=0
=>ad-cd+ab-bc+a^2-c^2=0
=>(a-c)d+(a-c)b+(a-c)(a+c)=0
=>(a-c)(a+b+c+d)=0
=>a-c=0 hoặc a+b+c+d=0
=>a=c hoặc a+b+c+d=0 (đpcm)
Chứng minh rằng : nếu a+b/b+c=c+d/c+a(c+d khác 0) thì a=c hoặc a+b+c+d=0
giải hộ mik nha
mik cần gấp
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{b+c}=\frac{c+d}{c+a}=\frac{a+b+c+d}{a+b+c+d}\)
\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=c\end{cases}}\)
Sửa đề:
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{c+b}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{c+b}{d+a}+1\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{c+d+b+d+c}{d+a}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c+d}{c+d}=\frac{c+d+b+a}{d+a}=\frac{\left(a+b+c+d\right)-\left(c+d+b+c\right)}{\left(c+d\right)-\left(d+a\right)}=\frac{0}{\left(c+d\right)-\left(d+a\right)}=0\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=0\)
Vì \(c+d\ne0\)
\(\Rightarrow a+b+c+d=0\left(đpcm\right)\)
và \(\frac{a+b+c+d}{c+d}-\frac{c+d+b+a}{d+a}=0\)
vd Thay a + b+ c= 1
ta có: \(\frac{1}{c+d}-\frac{1}{d+a}=0\)
\(\Rightarrow\frac{1}{c+d}=\frac{1}{d+a}\)
\(\Rightarrow d+a=c+d\)
\(\Rightarrow a=c\left(đpcm\right)\)
hok tốt!!
Ta có: a + c = 2b
=> d(a + c) = 2bd
mà c(b + d) = 2bd
=> d(a + c) = c(b + d)
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)
Ta có: 2bd = c(b + d)
Mà: a + c = 2b
=> (a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ab = cd
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm0
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )
TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )
\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)
Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
ta có nếu a+b+c+d #0 thì
a+b/b+c = c+d/d+a = a+b+c+d / a+b+c+d = 1 ((
vậy a+b = b+c <=> a=c
nếu a+b+c+d = 0 thì ta có
a+b= -(c+d)
b+c = -(d+a)
vậy nên luôn có a+b/c+d = c+d/d+a