(2a+b-5)(2a-b+5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2a+b-5\right)\left(2a-b+5\right)=\left[2a+\left(b-5\right)\right]\left[2a-\left(b-5\right)\right]=4a^2-\left(b-5\right)^2hoặc\left(2a+b-5\right)\left(2a-b+5\right)=4a^2-2ab+10a+2ab-b^2+5b-10a+5b-25=4a^2-b^2+10b-25=4a^2-\left(b-5\right)^2\)
(2a+b-5).(2a-b+5)
=2a(2a-b+5)+b(2a-b+5)-5(2a-b+5)
=4a\(^2\) -2ab+10a+2ab-b\(^2\)+5b-10a+5b-25
=4a\(^{2^{ }}\)-25-b\(^2\)
a)9b^2 + 5ab +25a^2/36
b)25x^2 -10xy +y^2
c)(2a+b)^2 - 25
d)x^4 - 4/25y^2
a) A=(4-5x)2-(3+5x)2=(4-5x-3-5x)(4-5x+3+5x)=(-25x+1)1=-25x+1
B=(3x-1)(1+3x)-(3x+1)2=9x2-1-(3x+1)2=9x2-1-(9x2+6x+1)=9x2-1-9x2-6x-1=-6x-2=-2(3x+1)
Ta có:a2+b2+5=2a+4b
⇔ (a2-2a+1)+(b2-4b+4)=0
⇔ (a-1)2+(b-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Thay vào P ta có:
\(P=\left|2.1-3.2\right|+1+5=10\)
Bài 2:
a) \(\left(x+5\right)^2=x^2+10x+25\)
b) \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)
c) \(\left(2u+3v\right)^2=4u^2+12uv+9v^2\)
d) \(\left(-\dfrac{1}{8}a+\dfrac{2}{3}bc\right)^2=\dfrac{1}{64}a^2-\dfrac{1}{6}abc+\dfrac{4}{9}b^2c^2\)
e) \(\left(\dfrac{x}{y}-\dfrac{1}{z}\right)^2=\dfrac{x^2}{y^2}-\dfrac{2x}{yz}+\dfrac{1}{z^2}\)
f) \(\left(\dfrac{mn}{4}-\dfrac{x}{6}\right)\left(\dfrac{mn}{4}+\dfrac{x}{6}\right)=\dfrac{m^2n^2}{16}-\dfrac{x^2}{36}\)
Bài 1:
$M=(2a+b)^2-(b-2a)^2=[(2a+b)-(b-2a)][(2a+b)+(b-2a)]$
$=4a.2b=8ab$
$N=(3a+1)^2+2a(1-2b)+(2b-1)^2$
$=(9a^2+6a+1)+2a-4ab+(4b^2-4b+1)$
$=9a^2+8a+4b^2-4b-4ab+2$
$A=(m-n)^2+4mn=m^2-2mn+n^2+4mn$
$=m^2+2mn+n^2=(m+n)^2$
a: a,b là các số tự nhiên
=>a+1>=1 và b+5>=5
(a+1)(b+5)=20
mà a+1>=1 và b+5>=5
nên (a+1;b+5) thuộc {(4;5); (2;10); (1;20)}
=>(a,b) thuộc {(3;0); (1;5); (0;15)}
b: a,b là các số tự nhiên
=>2a+3>=3 và b+1>=1
(2a+3)(b+1)=5
mà 2a+3>=3 và b+1>=1
nên (2a+3;b+1)=(5;1)
=>(a,b)=(1;0)
c:
2a+3=b(a+1)
=>2a+2-b(a+1)=-1
=>(a+1)(2-b)=-1
=>(a+1)(b-2)=1
a;b là các số tự nhiên nên a+1>=1 và b-2>=-2
(a+1)(b-2)=1
mà a+1>=1 và b-2>=-2
nên (a+1;b-2)=(1;-1)
=>(a,b)=(3;1)
a: (a,b) thuộc {(3;0); (1;5); (0;15)}
b: (a,b)=(1;0)
c: (a,b)=(3;1)
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
\(\left(2a+b-5\right)\left(2a-b+5\right)\)
\(=\left[2a+\left(b-5\right)\right]\left[2a-\left(b-5\right)\right]\)
\(=4a^2-\left(b-5\right)^2\)
\(=4a^2-\left(b^2-10b+25\right)\)
\(=4a^2-b^2+10b-25\)
\(\left(2a+b-5\right)\left(2a-b+5\right)\)
\(=\left(2a\right)^2-\left(b-5\right)^2\)
\(=4a^2-\left(b-5\right)^2\)