K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Ta có : \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(\Leftrightarrow2axby+2axvz+2bycz=a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2\)

\(\Leftrightarrow a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2-2axby-2azcx-2bycz=0\)

\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Do \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

:Dbanh

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

\(\frac{(ax+by+cz)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Rightarrow (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(\Leftrightarrow 2axby+2bycz+2axcz=a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)

\(\Leftrightarrow (a^2y^2+b^2x^2-2axby)+(a^2z^2+c^2x^2-2axcz)+(b^2z^2+c^2y^2-2bycz)=0\)

\(\Leftrightarrow (ay-bx)^2+(az-cx)^2+(bz-cy)^2=0\)

Vì bản thân mỗi số hạng đều không âm nên để tổng của chúng bằng $0$ thì:

\((ay-bx)^2=(az-cx)^2=(bz-cy)^2=0\Rightarrow ay=bx; az=cx; bz=cy\)

\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Ta có đpcm.

25 tháng 8 2023

Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))

4 tháng 1 2018

\(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)

\(\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)

Ta co

\(\dfrac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(z-x\right)^2+ab\left(x-y\right)^2}\)

\(=\dfrac{ax^2+by^2+cz^2}{bcy^2-2bcyz+bcz^2+acz^2-2aczx+acx^2+abx^2-2abxy+aby^2}\)

\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2-2\left(axby+bcyz+axcz\right)}\)

\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2}\)

\(=\dfrac{ax^2+by^2+cz^2}{\left(acx^2+abx^2+a^2x^2\right)+\left(bcy^2+aby^2+b^2y^2\right)+\left(c^2z^2+acz^2+bcz^2\right)}\)

\(=\dfrac{ax^2+by^2+cz^2}{ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)}\)

\(=\dfrac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\dfrac{1}{a+b+c}\) ( dpcm)

27 tháng 5 2018

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{a}=\dfrac{y}{b}\\\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\az=cx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\az-cx=0\end{matrix}\right.\)

\(\Leftrightarrow\left(ax-by\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\Leftrightarrow\left(a^2x^2-2axby+b^2y^2\right)+\left(b^2z^2-2bzcy+c^2y^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)=0\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2-\left(a^2x^2+b^2b^2+c^2y^2+2axby+2azcx+2bzcy\right)=0\)

\(\Leftrightarrow x^2\left(a^2+b^2+c^2\right)+y^2\left(a^2+b^2+c^2\right)+z^2\left(a^2+b^2+c^2\right)-\left(ax+ab+cz\right)^2=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

27 tháng 5 2018

Ta có : \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\) ( theo bđt Bu-nhi-a Cop-xki )

Dấu "=" xảy ra khi \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Vậy nếu \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) thì \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

28 tháng 7 2017

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

Trừ cả 2 vế cho \(a^2x^2+b^2y^2+c^2z^2\), ta có:

\(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2axby+2bycz+2axcz\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)

\(\left(a^2y^2+b^2x^2-2axby\right)+\left(a^2z^2+c^2z^2-2axcz\right)+\left(b^2z^2+c^2y^2-2bycz\right)=0\)

\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

\(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

=> đpcm