ae giúp mình với
Tìm x,y
2x2 +6y2 - 6xy - 9y + 2x + 6,5 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy-2x+y=1\)
\(\Leftrightarrow xy-2x+y-2=1-2\)
\(\Leftrightarrow x\left(y-2\right)+y-2=-1\)
\(\Leftrightarrow\left(y-2\right)\left(x+1\right)=-1\)
Ta có bảng:
y-2 | -1 | 1 |
x+1 | 1 | -1 |
y | 1 | 3 |
x | 0 | -2 |
Vậy \(\left(x;y\right)=\left(0;1\right);\left(-2;3\right)\)
1) (x+3)(x2- 3x + 9) = x3 + 27
2) (x2 + 2y)2 = x4 + 4xy + 4y2
3) (2x-3)(2x+3) = 4x2 - 9
4) (x + 3y)3 = x3 + 9x2y + 9xy2 + y3
5) (2x2- y)3 = 8x6 - 6x4y + 6x2y2 - y3
6) (x-3y)(x2 + 3xy +9y2)= x3- 27y3
7) (2x + 3y)(4x2 - 6xy +9y2)= 8x3 + 27y3
8) (3x - y2)2= 9x2 - 6xy2 + y4
\(A=2x^2-6xy+9y^2-12x+2017\)
\(A=x^2+x^2-6xy+\left(3y\right)^2-12x+2014\)
\(A=\left(x^2-2\cdot x\cdot6+6^2\right)+\left[\left(3y\right)^2-2\cdot3y\cdot x+x^2\right]+1978\)
\(A=\left(x-6\right)^2+\left(3y-x\right)^2+1978\ge1978>0\forall x;y\)
P.s: 1978 năm sinh me t :)
\(x^2-2x+\left(x-2\right)^2\)
\(=x^2-2x+x^2-4x+4\)
\(=2x^2-6x+4\)
\(=2.\left(x^2-3x+2\right)\)
\(=2.\left[\left(x^2-x\right)-\left(2x-2\right)\right]\)
\(=2.\left[x.\left(x-1\right)-2.\left(x-1\right)\right]\)
\(=2.\left(x-1\right)\left(x-2\right)\)