Cho tam giác ABC cân tại A, AB=4.Từ một điểm D trên cạnh BC, vẽ DE//AB (E thuộc AC) và DF//AC(F thuộc AB). Tính chu vi của tứ giác AEDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$DF\parallel AE, DE\parallel AF$ nên $AEDF$ là hình bình hành
$P_{AEDF}=AE+DF+DE+AF$
Lại có:
$DF\parallel AC$ nên áp dụng định lý Talet:
$\frac{DF}{AC}=\frac{BF}{AB}$. Mà $AB=AC$ nên $DF=BF$
$DE\parallel AB$ nên áp dụng định lý Talet:
$\frac{CE}{AC}=\frac{DE}{AB}$ mà $AB=AC$ nên $CE=DE$
Do đó:
$P_{AEDF}=AE+BF+CE+AF=(AE+CE)+(BF+AF)=AC+AB=4+4=8$ (cm)
-Ta có: DE//AB, DF//AC (gt).
\(\Rightarrow\) AEDF là hình bình hành mà AD là tia phân giác của \(\widehat{BAC}\) (gt).
\(\Rightarrow\) AEDF là hình thoi.
-Xét △ABC có: DF//AC (gt).
\(\Rightarrow\dfrac{BF}{AB}=\dfrac{DF}{AC}\) (định lí Ta-let).
\(\Rightarrow1-\dfrac{DF}{AB}=\dfrac{DF}{AC}\)
\(\Rightarrow\dfrac{DF}{AB}+\dfrac{DF}{AC}=1\)
\(\Rightarrow DF.\left(\dfrac{1}{AB}+\dfrac{1}{AC}\right)=1\)
\(\Rightarrow DF.\left(\dfrac{1}{3}+\dfrac{1}{6}\right)=1\)
\(\Rightarrow DF.\dfrac{1}{2}=1\)
\(\Rightarrow DF=2\) (cm).
\(\Rightarrow P_{AEDF}=4.DF=4.2=8\left(cm\right)\) (do AEDF là hình thoi).
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét tứ giác AIBD có
E là trung điểm của AB
E là trung điểm của ID
Do đó: AIBD là hình bình hành
mà AB\(\perp\)DI
nên AIBD là hình thoi
Xét tứ giác AEDF có
AE//DF
DE//AF
Do đó: AEDF là hình bình hành
mà \(\widehat{DAE}=90^0\)
nên AEDF là hình chữ nhật
a: BC=căn 6^2+8^2=10cm
sin C=AB/BC=3/5
=>góc C=37 độ
=>góc B=53 độ
b: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm; CD=40/7cm
c: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
=>AEDF là hình vuông