1.có số nguyên tố nào được viết dưới dạng 6k+2 ; 6k+3 (k thuộc N ) không?
2.người ta viết số 2015 thành tổng của n hợp số. tìm giá trị lớn nhất của n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
6k+2=2(k+1) chia hết cho 2 nên là hợp số
Ta cũng có:
6k+3=3(k+1) chia hết cho 3 nên là hợp số
Vậy không có số nguyên tố nào được viết dưới dạng 6k+2 ; 6k+3 (k \(\in\) N )
mọi số tự nhiên chia cho 6 có số dư là 1,2,3,4,5
th1:k=0suy ra p=6k hợp số (loại)
th2 k=1suyra p= 6k+1
th3 k=2suy ra p=6k+2 (chọn)
th4 k=3suy ra p=6k+3 (chọn)
vậy p có dạng 6k+2 ; 6k+3
tick nhanguyễn thị mi
Giả sử x là số nguyên tố lớn hơn 3 và \(x=6k+r\), \(r\in\left\{0;1;2;3;4;5\right\}\)
Ta dùng phương pháp loại trừ, với chú ý các số nguyên tố lớn hơn 3 không chia hết 2 và 3.
- Nếu r =0; 2; 4 ta thấy ngay x chia hết 2 (Loại)
- Nếu r = 3, ta thấy ngay x chia hết 3 (Loại)
Vậy x chỉ có thể viết thành 6k+1 hoặc 6k +5
Chúc em học tốt :))
B1 :
Vì 2^4 = 16 chia hết cho 16
=> A chia hết cho 16
Vì 5^3 = 125 chia hết cho 25
=> A chia hết cho 25 (1)
A chia hết cho 16 => A chia hết cho 4 (2)
Từ (1) và (2) => A chia hết cho 100 ( vì 4 và 25 là 2 số nguyên tố cùng nhau )
Vì 2^4 chia hết cho 16
5^3 chia hết cho 25
=> A chia hết cho 16.25 = 400
=> A chia hết cho 40
Mà 7^8 chia hết cho 7 => A chia hết cho 7
=> A chia hết cho 280 ( vì 40 và 7 là 2 số nguyên tố cùng nhau )
k mk nha
a) 6=2+2+2
7=2+2+3
8=2+3+3
b) 30= 13+17= 7+23
32=3+29 = 19+13
a) Chứng minh: gọi số tự nhiên đó là n (n>5)
+) Nếu n chẵn => n= 2+m trong đó m chẵn ;m>3
+) Nếu n lẻ => n= 3+m trong đó m lẻ; m> 2
Theo mệnh đề Euler => m được viết dưới dạng tổng quát của 2 số nguyên tố
=> n là tổng quát của các số nguên tố
6= 3+3
7= 2+5
8= 3+5 (dựa vào số lẻ và chẵn như tổng quát trên)
b) CM như câu trên:
30= 7+23
32=19+13
a)
nếu p chia 6 dư 0 thì p=6k;p là hợp số
nếu p chia 6 dư 1 thì p=6k+1
nếu p chia 6 dư 2 thì p=6k+2,p là hợp số
nếu p chia 6 dư 3 thì p=6k+3,p là hợp số
nếu p chia 6 dư 4 thì p=6k+4,p là hợp số
nếu p chia 6 dư 5 thì p=6k+5
vậy mọi số nguyên t61 >3 chia 6 thì dư 1;dư 5 tức p=6k+1 và p=6k+5