Cho các số dương a, b thỏa mãn:
\(a^{2016}+b^{2016}=a^{2017}+b^{2017}=a^{2018}+b^{2018}\)
Hãy tính giá trị của \(S=a^{1000}+b^{1000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a2017 + b2017 = a2017 + ab2016 + a2016b + b2017 - a2016b - ab2016
= a.(a2016 + b2016) + b.(b2016 + a2016) - ab.(a2015 - b2015)
= (a2016 + b2016).(a + b) - ab.(a2015 + b2015)
Chia cả 2 vế cho a2017 + b2017 = a2016 + b2016 = a2015 + b2015
=> a + b - ab = 1
=> a.(1 - b) - 1 + b = 0
=> a.(1 - b) - (1 - b) = 0
=> (1 - b).(a - 1) = 0
=> a = b = 1
Ta có: P = 20.a + 11.b + 2017
P = 20.1 + 11.b + 2017
P = 20 + 11 + 2017
P = 2048
Ta có :
a^2>hoặc=0(vì mang số mũ dương)
Tương tự => b^2 và c ^2 như a^2
mà a^2+b^2+c^2=1=>a=b=c=1
=> a^2016+b^2017+c^2018=1
Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)
\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=1+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)
Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)
\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)
Cứ tiếp tục thì sẽ ra nhá :))
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thya các giá trị của a, b, c., d vào M . Tính đc M = 0