vớ a>0
chứng minh:a=1/a>=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với \(x\ne0\) , ta rút gọn :
\(A=\left(6x^3+12x^2\right):2x-2x\left(x+1\right)+5\)
\(A=3x^2+6x-2-2x+5\)
\(A=3x^2+6x+3\)
\(A=3\left(x^2+2x+1\right)\)
\(A=3\left(x+1\right)^2\)
Vậy sau khi rút gọn kết quả là : \(A=3\left(x+1\right)^2\)
b) Ta thấy \(x\ne0\Rightarrow x+1\ne1\)
\(\Rightarrow\left(x+1\right)^2\ge1;\forall x\ne0\)
\(\Rightarrow3\left(x+1\right)^2\ge3>1;\forall x\ne0\)
Vậy \(3\left(x+1\right)^2>1\Leftrightarrow A>1\) với \(\forall x\ne0\) \(\left(ĐPCM\right)\)
b)
Để \(\frac{a}{b}>\frac{a+c}{b+d}\) thì \(a.\left(b+d\right)>b.\left(a+c\right)\)
\(\Rightarrow ab+ad>ab+bc\)
\(\Rightarrow ad>bc\)
\(\Rightarrow\frac{a}{b}>\frac{c}{d}\left(đpcm\right).\)
Để \(\frac{a+c}{b+d}>\frac{c}{d}\) thì \(\left(a+c\right).d>\left(b+d\right).c\)
\(\Rightarrow ad+cd>bc+dc\)
\(\Rightarrow ad>bc\)
\(\Rightarrow\frac{a}{b}>\frac{c}{d}\left(đpcm\right).\)
Chúc bạn học tốt!
Với mọi k, n Є N+, n ≥ 2 có 1 / (k + 1) + 1 / (k + 2) + ... + 1 / (k + n) < n / (k + 1)
=>
1 = 1
1 / 2 + 1 / 3 < 2 / 2 = 1
1 / 4 + 1 / 5 + 1 / 6 + 1 / 7 < 4 / 4 = 1
1 / 8 + ... + 15 < 8 / 8 = 1
1 / 16 + ... + 1 / 31 < 16 / 16 = 1
1 / 32 + ... + 1 / 63 < 32 / 32 = 1
Cộng vế theo vế có 1 + 1 / 2 + ... + 1 / 63 < 3
Ta có: b,d>0 =>b+d>0
a/b<c/d=>ad<bc
Thêm ab vào 2 vế, ta được: ab+ad<ab+bc
=>a(b+d)<(a+c)b
=>a/b<a+c/b+d(1)
Thêm cd vào 2 vế, ta được: ad+cd<cd+bc
=>(a+c)d<c(b+d)
=>a+c/b+d<c/d(2)
Từ 1,2 =>đpcm
a) \(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{a}{b}}\) với a>0 và b>0
b) \(\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m\left(2-2x+x^2\right)}{81}}\)
\(=\sqrt{\dfrac{4m^2\left(1-2x+x^2\right)}{81\left(1-2x+x^2\right)}}=\sqrt{\dfrac{4m^2}{81}}=\sqrt{\dfrac{2m}{9}}\)
Ta có: \(a>0\)
\(\Leftrightarrow a\ge1\)
\(\Leftrightarrow a-1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+1\ge2a\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge\dfrac{2a}{a}\) ( vì \(a>0\) nên không đổi chiều )
\(\Leftrightarrow\dfrac{a^2}{a}+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow a+\dfrac{1}{a}\ge2\)
=> đpcm
nhầm phải là a+1/a>=2