K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

a) Số số hạng là : ( 2014 - 4 ) : 3 + 1 = 671

S là : ( 2014 + 4 ) x 671 : 2 = 677039

b) Có nếu n là số chẵn \(\Rightarrow n⋮2\Rightarrow n\cdot\left(n+2013\right)⋮2\)

Nếu n là số lẻ \(\Rightarrow n+2013\)là số chẵn chia hết cho 2 \(\Rightarrow n\cdot\left(n+2013\right)⋮2\)

Vậy \(n\cdot\left(n+2013\right)\)luôn luôn chia hết cho 2 với mọi n ( ĐPCM )

c) \(M=2+2^2+2^3+...+2^{20}\)

\(2M=2\cdot\left(2+2^2+2^3+...+2^{20}\right)\)

\(2M=2^2+2^3+...+2^{21}\)

\(2M-M=2^{21}-2\)

Mà cứ 5 thừa số 2 thì số cuối của \(2^{21}\) sẽ lặp lại

\(\Rightarrow2^{21}\)có tận cùng là 2

\(\Rightarrow2^{21}-2\)có tận cùng là 0 chia hết cho 5

\(\Rightarrow M⋮5\)

16 tháng 12 2021

\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)

16 tháng 12 2021

Thank youvui

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

11 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

23 tháng 7 2015

làm 1 bài thôi có được không.

12 tháng 10 2015

#ha le ha ban trả lời câu 2,3,4 giúp minh với

\(3^{n+1}+3^{n+2}+3^{n+3}\)

\(=3^{n+1}\left(1+3+3^2\right)\)

\(=3^{n+1}.13⋮13\forall n\inℕ\)

19 tháng 2 2021
Con điên giúp tao bài toán nhá con chó