K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

\(VP=3-\left(y^2-2y+1\right)=3-\left(y-1\right)^2\le3\)(Dấu "=" xảy ra khi \(y=1\)

Nhìn đề bài ta đoán dạng bất đẳng thức, có \(VP\le3\), giờ ta chứng minh \(VT\ge3\)

Thật vậy, ta có

 \(\frac{4x^2-4x+7}{x^2+1}-3=\frac{4x^2-4x+7-3\left(x^2+1\right)}{x^2+1}=\frac{x^2-4x+4}{x^2+1}\)

\(=\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

Do đó; \(\frac{4x^2-4x+7}{x^2+1}\ge3\)(dấu "=" xảy ra khi \(x=2\))

\(\Rightarrow\frac{4x^2-4x+7}{x^2+1}\ge3\ge2+2y-y^2\)

\(VT=VP\Leftrightarrow VT=3;VP=3\)

\(\Leftrightarrow x=3;y=1\)

 

 

13 tháng 1 2018

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

25 tháng 7 2016

giúp mình nhé